
A DUAL-CLOCK FIF O FOR THE RELIABLE TRANSFER
OF HIGH-THR OUGHPUT DATA BETWEEN

UNRELA TED CLOCK DOMAINS

By

RYAN WILLIAM APPERSON
B.S.E.E. (University of Washington) March 2002

THESIS

Submitted in partial satisfaction of the requirements for the degreeof

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIF ORNIA

DAVIS

Approved:

Chair, Dr. Bevan Baas

Member, Dr. Rajeevan Amirthara jah

Member, Dr. VenkateshAkella

Committee in charge
2004

{ i {

c Copyright by Ryan William Apperson 2004
All Rights Reserved

Abstract

First-In First-Out (FIF O) memory structures are widely usedto bu�er the transfer of data

betweenprocessingblocks. High performanceand high complexity digital systemsincreasingly are

required to transfer data between modules of di�ering and even unrelated clock frequencies. This

thesis presents an encompassingdescription of the motivation and design decisions for a robust

and scalabledual-clock FIFO architecture. It also investigatesthe hardware design issuesinvolved

in this architecture through the custom CMOS circuit design of the dual-clock FIFO architecture.

The proposeddesign utilizes an e�cien t and low-latency memory array structure and can operate

in applications where multiple clock cyclesof latency exist between the data producer, FIF O, and

the data consumer. This feature is increasingly relevant in high-speeddesignswhere multiple clock

cyclesarenot uncommonly neededto transmit data betweenmajor processingblocks. It alsoincludes

a con�gurable synchronization circuit that robustly synchronizes asynchronous signals within the

FIFO.

{ ii {

Ac knowledgmen ts

This thesis is dedicated to all the people who have helped me along way to achieve this

accomplishment. I would like to thank my friends and family for their guidance and support. I

would especially like to thank my parents and Michelle for all their love and support through all the

challengesof graduate school. Thank you to all the members of VCL, especially Mike Lai, Omar

Sattari and Mike Meeuwsen for their encouragement, advice, support and all the laughs. I would

also like to thank Dr. Amirthara jah and Dr. Akella for taking the time to be on my committee and

all of their feedback and suggestions.Additionally , thank you to Intel for their support of VCL and

providing the computers that performed much of the work for this thesis. Finally, I would like to

thank my advisor, Dr. Baas, for his support, advice, optimism and encouragement.

{ iii {

Con ten ts

Abstract ii

Ac kno wledgmen ts iii

List of Figures vi

List of Tables vii

1 In tro duction 1
1.1 Project Goals . 2

1.1.1 Target System . 2
1.2 Overview . 3

2 Single-Clo ck FIF Os 5
2.1 Linear FIFOs . 6
2.2 Circular FIFOs . 7

2.2.1 Methods for using all N words . 10
2.2.2 Reserve space. 11
2.2.3 Arithmetic hardware . 11
2.2.4 Communication protocols . 12

3 Sync hronization 15
3.1 Metastabilit y . 16

3.1.1 Background . 16
3.1.2 Basic failure model . 17
3.1.3 Final remarks . 18

3.2 Synchronization Strategiesfor Asynchronous Inputs 19
3.2.1 Increasing metastabilit y resolution time . 19
3.2.2 Pausing the clock . 21

3.3 Synchronizing Multi-Bit Words . 22

4 Dual-Clo ck FIF O Arc hitecture 24
4.1 Background . 24
4.2 Architecture Details . 25

4.2.1 Address and control information . 25
4.2.2 Reserve space. 27
4.2.3 Communication interface . 28

{ iv {

5 Hardw are Implemen tation 29
5.1 Design and Veri�cation Process . 29
5.2 Memory Design . 30

5.2.1 SRAM cell . 31
5.2.2 Architecture . 32

5.3 Synchronizer Design . 38
5.4 Gray/Binary Converters . 45

5.4.1 Background . 45
5.4.2 Circuit design . 47

5.5 Binary Incrementers . 48
5.6 Reserve Logic . 49
5.7 Comparators . 52
5.8 Top-level FIFO Module . 53

5.8.1 Performanceand analysis . 56

6 Conclusion 60
6.1 Summary . 60
6.2 Future Work . 60

Bibliograph y 62

{ v {

List of Figures

2.1 Target systemsfor dual-clock FIFOs . 6
2.2 Linear shift-register FIFO block diagram . 7
2.3 Linear elastic FIFO block diagram . 7
2.4 Circular FIFO block diagram . 8
2.5 Typical write and read addresspointer schemefor a circular FIF O 9
2.6 Circular FIFO with empty de�ned as when wr ptr == rd ptr 9
2.7 Circular FIFO with ful l de�ned as when rd ptr == wr ptr 10
2.8 FIFO to producer write path showing multi-clo ck latency from ful l signal to halt in

write data stream . 11
2.9 System architecture using a FIFO module for communication 12

3.1 Generalizedip-op responsetime versusdata arrival time 18
3.2 An N element chain synchronizer circuit . 20
3.3 Sampling of a multi-bit transition word and a single-bit transition word 23

4.1 Detailed diagram of dual-clock FIFO architecture . 26

5.1 Basic ten transistor SRAM cell . 31
5.2 SRAM cell layout . 33
5.3 SRAM write control signal generation . 34
5.4 Simulation waveforms for writing a \0" to an SRAM cell 35
5.5 Simulation waveforms for writing a \1" to an SRAM cell 35
5.6 SRAM read control signal generation . 36
5.7 Simulation waveforms for reading a \0" from an SRAM cell 36
5.8 Simulation waveforms for reading a \1" from an SRAM cell 37
5.9 Synchronizer element with con�gurable metastabilit y resolution time 39
5.10 Schematic of negative edgetriggered synchronizer ip-op with local clock bu�ers . 39
5.11 Metastable event of D ip-op . 42
5.12 Measuring the � parameter for synchronizer . 43
5.13 Plot of HSPICE data usedfor determining T0 parameter 44
5.14 Binary to Gray code conversion circuit . 46
5.15 GeneralizedN -bit Gray to binary converter architecture 46
5.16 Six-bit Gray to binary conversion circuit . 48
5.17 Six bit binary incrementer circuit . 49
5.18 Dot diagram representing \In Reserve" adder function 50
5.19 Hardware implementation of a full adder circuit . 51
5.20 Three input, six bit adder for determing the \In Reserve" condition 52
5.21 Six bit comparator for determing the \empt y" condition 53
5.22 Pipeline diagram for the write side of the FIFO . 54
5.23 Pipeline diagram for the read side of the FIFO . 55
5.24 Final layout for the dual-clock FIFO module . 57

{ vi {

List of Tables

2.1 Four primary states of a generaldata transferring interface 14
2.2 States of a data transferring interface with equivalent FIFO state when reserve space

is utilized . 14

5.1 Device sizing for SRAM cell . 32
5.2 Device sizing for ip-op synchronizer . 40
5.3 Metastabilit y parameters from HSPICE numerical simulator 42
5.4 Estimated mean time betweenfailures . 45
5.5 Area breakdown for the FIFO hardware module . 56

{ vii {

1

Chapter 1

In tro duction

Synchronous systemshave traditionally been the predominant method of implementation

in digital electronicsdesign. Nearly all present day systemsutilize synchronousdesigntechniques[1].

However, in order for this to be accomplished,a global clock referencemust be accurately supplied

to all areasof the circuit at almost precisely the sametime. Transistor sizeshave beencontinually

shrinking, while both clock frequenciesand designautomation tool capabilities have beenincreasing.

This is leading to larger and more complex, high-speed system implementations. Unfortunately,

global interconnect scalinghasnot beenable to maintain the sameperformanceincreases[2], causing

distribution of a global clock signal to becomea major concernin system design. This has resulted

in clock distribution requiring more hardware and increaseddesigntime and e�ort.

One solution for coping with this problem is to utilize self-timed or asynchronous circuits,

which lack a global timing reference. However, several obstaclesprevent a major transition to this

designstyle, including the lack of mature designtools for asynchronousdesignand the unwillingness

of the industry to incur the cost and risk of moving away from a design style that has been so

successfulin the past [3]. An alternativ e approach is to create systemsthat mix asynchronous and

synchronous designtechniques. This designstyle is referred to as a Globally Asynchronous Locally

Synchronous (GALS) design [4]. In this design paradigm local blocks are built using traditional

synchronousdesigntechniques,but thesesynchronousblocks do not shareglobal timing information

and are asynchronous with respect to each other.

Unfortunately, while it is often convenient to divide a systeminto multiple sub-components,

it is unlikely that these components will be completely autonomous. Accordingly, data transfer is

generally required betweenlocal synchronousblocks. Accomplishing this task reliably (i.e., without

CHAPTER 1. INTR ODUCTION 2

data corruption or loss) and e�cien tly (i.e., minimizing area and energy dissipation) is one of the

primary challengesin GALS designs.

One structure that is particularly well-suited for this task is the First-In First-Out (FIF O)

memory structure. As indicated by its name,data items o w through the structure in the prescribed

fashion, wherein the �rst data item that enters the structure will be the �rst data item to leave the

structure. A basicFIFO architecture canbemodi�ed to accommodate two independent clock inputs.

Data passingthrough the FIFO module will enter with referenceto oneclock and exit with reference

to the other clock. In this way, data can be safely passedbetweenindependent clock domains.

1.1 Pro ject Goals

There are three primary goals for this project. The �rst is to research synchronization

strategies, asynchronous designand FIFO design, focusing on how this information can be applied

to the development of an e�ectiv e means of transporting data between two unrelated clock do-

mains. Secondly, this knowledge will be used to design a module capable of reliably transporting

high-throughput data between independently clocked processingunits. This module will then be

integrated into two di�eren t RTL level models of the working GALS multi-pro cessorsystem. The

�rst is a behavioral model and the secondis a more complex, cycle-accuratestructural model. The

�nal goal is to design and implement the circuits and full custom layout for the FIF O module for

fabrication in a deepsub-micron CMOS technology.

1.1.1 Target System

To help gain perspective on the designchoicesand requirements that motivated the design

and implementation of the dual-clock FIFOs presented in this thesis, it is useful to give an overview

of the target application. The FIFO was designedfor implementation in the AsAP (Asynchronous

Array of Simple Processors) system chip [5]. The AsAP system is a parallel, recon�gurable two-

dimensional array of processors.Each processorhas a 16-bit �xed point datapath, which is divided

into a 9-stage pipeline. The instruction set architecture follows a RISC type design style. Each

processorhasits own small memory spacethat is divided into separatemodulesfor data, instructions

and con�guration values. The simplicit y of the architecture, along with the small local memories,

facilitates several of the primary designgoalsincluding high-speed, low area, good energy-e�ciency

and easeof programmabilit y. Becausethe architecture is targeted to digital signal processingtasks,

CHAPTER 1. INTR ODUCTION 3

several specialpurposemodulesare included, such asaddressgenerators,repeat logic and a multiply-

accumulate unit.

Clock generationis doneindependently at the processorlevel. This is accomplishedby using

a programmable ring oscillator, which can be con�gured to operate over a rangeof frequencies.The

clock frequency can be controlled with special con�guration instructions. Accordingly, the clock

frequency can change dynamically during run time. Additionally , if a processorbecomesidle, the

clock can also be stopped by the processorcontrol hardware until it can again perform useful work.

In general, the clock pausesbasedon either the availabilit y of the data items required to execute

the processor'scurrent instruction or the downstream processor'sabilit y to accept data. While the

clock is stopped when the processorbecomesidle, unlike someapplications, the clock is not paused

or modi�ed for synchronization purposes(seeChap. 3-5 for details). Becausethe processorclocks

are generatedand controlled locally, each processoroperatesasynchronously to the other processors

in the array.

The processorarray connectionsare software con�gurable. Each processorin the array has

two input ports and one output port. Each input port can be connectedto the output port of a

neighbor processor.There can be no more than two input sourcesfor a single processor.However,

one processorcan sourceits output data to as many as four processors.

The dual-clock FIFO modulesdescribed in this thesisare the mechanismfor communication

between the independent processorcoresand the o�-c hip I/O devices. Becauseeach processorhas

its own independent and dynamic clock, the FIFO must both bu�er and reliably synchronize the

data being transmitted betweenprocessors.Ideally, this is a high-throughput operation with aslittle

latency as possible. The FIFO also has to supply a wake-up signal to any neighboring processors

that are halted waiting on the FIFO. As mentioned the local clocks will pausewhen the processor

becomesidle. When the clock is paused, all activit y in that processoris stopped and all register

values are frozen. Accordingly, a combinational signal must be supplied to restart the processor

clock so that it can wake-up and perform the task that it was waiting to complete. Details of this

asynchronous wake-up signal are covered in section 5.8.

1.2 Overview

This thesis addressesthe design of dual-clock FIFOs and the necessarybackground in-

formation for understanding the problems this design addresses.We are particularly interested in

solutions that enablethe transfer of data betweenmodulesfrom completely unrelated clock domains.

CHAPTER 1. INTR ODUCTION 4

Chapter 2 intro duceskey structures and parameters for all styles of FIFO bu�ers by analyzing the

single-clock case.Chapter 3 discussesmetastabilit y and synchronization background and issuesthat

needto be consideredwhen working with multiple clock domain systems.Chapter 4 describesexten-

sionsto single-clock FIFOs that enableoperation in dual-clock settings and presents an architecture

for the design of robust and e�cien t solutions for implementing a dual-clock FIFO. Chapter 5

describes the hardware implementation of the dual-clock FIFO. Chapter 6 summarizesthe work

presented and suggestsareasfor future work.

5

Chapter 2

Single-Clo ck FIF Os

First-In First-Out (FIF O) bu�er structures �nd widespread use in many digital system

applications [6]. In general, the use of FIFOs falls into one of two categories. The �rst is for

data rate matching between modules producing and consuming data at di�eren t rates. Sincedata

o w into and out of an interface must be equal over long periods of time, rate matching implies

a producer and consumer with di�eren t patterns of data bursting over time. A secondcategory,

which is becoming increasingly important with high clock rate systems,includes applications that

useFIFOs to transfer data betweenblocks in clock domains that are unsynchronized|meaning the

phaseand frequencyof the two clocks are not matched. This mismatch may be intentional (e.g., an

SoCwith multiple clock domains) or unintentional (e.g., in a large clock distribution network which

has signi�cant jitter and skew). Examples of thesecan be seenin Figure 2.1.

A particularly useful example of a FIFO in the secondcategory is a dual-clock or mixed-

clock FIF O. These FIFOs are also sometimescalled asynchronous FIF Os, however, since the term

asynchronous implies a lack of a clock, the term is likely better reserved for circuits without clocks.

Dual-clock FIFOs operatewith two clocks, with varying levelsof timing similarit y. Dual-clock FIF Os

are covered in Chapter 4.

To understand the fundamentals behind dual-clock FIFOs it is useful to consider the case

of a single-clock synchronous FIFO, becausemany of the sameconceptsapply. This chapter covers

thesefundamental principles of FIFOs.

CHAPTER 2. SINGLE-CLOCK FIFOS 6

Module BModule A
Data DataData

tskew + tj itter

Global Clock

Example 2: Unintentional clock mismatch

Module BModule A

Clock A Clock B

Data DataData

Example 1: Intentional clock mismatch

Figure 2.1: Target systemsfor dual-clock FIFOs

When comparingFIFO designs,a number of designparametersare important; they include:

� Robustness|data can not be lost, corrupted, or duplicated;

� High-throughput;

� Energy-e�ciency;

� Scalability|the most widely-applicable designswill allow bu�er sizesto scaleover large ranges;

� Low-latency for latency-sensitive applications; and

� Support high clock rates for high performance.

2.1 Linear FIF Os

The simplest FIFO structure consists of a linear chain of latches or ip-ops connected

serially as a shift register. Data is shifted into one end of the chain and propagatesthrough every

memory element until it reachesthe end as shown in Figure 2.2. This FIF O is synchronous sinceall

movement of data requires a clock edge.

Alternativ ely, an elastic FIFO can be constructed that usescontrol signal handshakes to

propagate data from location to location. Unlike the synchronous case, a datum can propagate

CHAPTER 2. SINGLE-CLOCK FIFOS 7

1

Clock

2 N

Producer
Data

Consumer
Data

Figure 2.2: Linear shift-register FIFO block diagram

1 2 N

Producer
Data

Consumer
Data

Control Control

Figure 2.3: Linear elastic FIFO block diagram

through the FIFO without any new items entering. This results in the FIFO being at various degrees

of fullness, hence,the name elastic. FIFOs of this nature �t nicely into asynchronous designsand

many examplesof thesecan be found in the literature [7] [8] [9]. An example of this type of FIF O

can be seenin Figure 2.3.

Drawbacks of theseapproachesinclude high latency, low power e�ciency and low memory

density|whic h make scaling more di�cult. High latency and power dissipation arise from the

fact that each datum must o w through every element of the FIFO memory. Additionally , in the

synchronouscaseevery memory element requiresa clock signal that impedesscalability and increases

power consumption. Low memory density is causedby the high areaper bit of latchesand ip-ops.

Many extensionsof this basic FIFO structure have beenproposedwith the key di�erences

being the path by which data travels through the structure. These extensionsprovide worst case

paths that are shorter than the total number of memory locations in the FIF O, resulting in lower

latencies and improved energy e�ciency . Examples of these variant structures are square FIF Os,

parallel FIFOs, tree FIFOs and folded FIFOs [8].

2.2 Circular FIF Os

A more e�cien t method to construct a FIFO is to createa circular bu�er using an array of

memory elements designedso that data can be written to and read from arbitrary locations in the

memory array. Thesestructures are alsocalled parallel FIF Os [10] and are often built using common

SRAM or DRAM memories. The random accessnature of memory arrays enableslow minimum

latencies, and high energy e�ciencies compared to linear FIFOs. Scalability is also dramatically

CHAPTER 2. SINGLE-CLOCK FIFOS 8

Memory
Array

Write
Logic

Read
Logic

Producer Consumer

Control Control

Data Data

Wr
Addr

Rd
Addr

N words

Figure 2.4: Circular FIFO block diagram

improved due to the fact that clock distribution is not directly a�ected by the FIFO size and the

memory density is higher. In the event of a bu�er size change, generally only very minor control

logic changesare required. Figure 2.4 shows a high-level block diagram of a circular FIF O. Note that

the read and write control blocks in single-clock FIFOs share a common clock so their separation

represents a functional division, not necessarilya physical one. The write circuitry controls data

being written to the FIFO and tests whether the memory is full. The read circuit y controls the o w

of data out of the FIFO and is concernedwith determining when the memory becomesempty.

Control circuits for circular FIFOs are more complex than control circuits for linear FIFOs

due to the needto managenon-regular write and read accesseswith special caseswhen the array is

full or empty. In particular, common failure modesfor theseFIFOs include the following cases:

� Undero w|in valid or duplicate data are transmitted by the FIF O,

� Overo w|v alid data in the memory are overwritten,

� Deadlock|an interfacing condition that permanently prevents operation of the FIFO, and

� Stuck data|v alid data remain in the FIFO, but are not read out even though read requests

are made.

All parallel FIFOs must keep track of three mutually-exclusive states: 1) empty (also the

initial state), 2) full, and 3) data occupancybetweenempty and full.

Tracking valid data within a FIFO is typically accomplishedwith one of two approaches.

The �rst method involves using an N -bit register where each bit represents the validit y of data in

the memory and N is the number of words in the memory. A secondmethod is to maintain read

and write (or headand tail) addresspointers which indicate the beginning and end of the valid data

range in the memory. Figure 2.5 shows a schemewhere the write addresspointer (wr ptr) indicates

CHAPTER 2. SINGLE-CLOCK FIFOS 9

Addr 3

Addr N-1

Addr 1
Addr 2

Addr 0

wr_ptr

rd_ptr

- Valid Data

Figure 2.5: Typical write and read addresspointer schemefor a circular FIF O

- Valid DataCondition:
wr_ptr = rd_ptr

rd_ptrwr_ptr

 Condition:
wr_ptr + 1 = rd_ptr
Alt: wr_ptr = rd_ptr - 1

rd_ptr
wr_ptr

Addr N-2
Addr N-1

Addr 1
Addr 2

Addr 0

Maximum
OccupancyEmpty

Addr N-2
Addr N-1

Addr 1
Addr 2

Addr 0

Figure 2.6: Circular FIFO with empty de�ned as when wr ptr == rd ptr

the memory location for the next data write, and the read addresspointer (rd ptr) indicates the

location of the next memory read. Other schemesare possible, the most common of which o�set

their pointers by one memory location from the exampleshown here.

Given the useof readand write pointers, there are two primary methods to de�ne the empty

and full conditions. As shown in Figure 2.6, the �rst possibility is to de�ne the empty condition

as occurring when wr ptr is equal to rd ptr . The \maxim um occupancy" (full { 1) condition is

indicated when wr ptr + 1 = rd ptr or alternativ ely, when wr ptr = rd ptr { 1. The secondcaseis

shown in Figure 2.7 where the full condition is indicated by equality of rd ptr and wr ptr and the

\minim um occupancy" (one datum) condition is indicated by rd ptr = wr ptr { 1.

Clearly, theseschemespresent problems in representing all possiblestatesbecausethe case

where rd ptr = wr ptr becomesambiguous without either keeping track of the pointer history or

preventing the pointers from reaching this state in either the full or empty condition as mentioned

above. This is becausethere are N + 1 levels of occupancy (0 to N words) but only log2(N) bits

in the addresspointers|represen ting only N possiblevalues. (There are actually many more total

states,but given oneaddress,say rd ptr , there are N + 1 possiblestates for wr ptr and all such cases

are equivalent.)

For the caseshown in Figure 2.6, the N possible representations are used for memory

CHAPTER 2. SINGLE-CLOCK FIFOS 10

- Valid DataCondition:
rd_ptr = wr_ptr

rd_ptr
wr_ptr

 Condition:
rd_ptr + 1 = wr_ptr
Alt: rd_ptr = wr_ptr - 1

rd_ptrwr_ptr

Addr N-2
Addr N-1

Addr 1
Addr 2

Addr 0

Minimum
Occupancy Full

Addr N-2
Addr N-1

Addr 1
Addr 2

Addr 0

Figure 2.7: Circular FIFO with ful l de�ned as when rd ptr == wr ptr

occupanciesof 0 to N � 1 words. This results in a straightforward initial state (empty) and logic

that must prevent the N th memory location from being used.

For the caseshown in Figure 2.7, the N possiblevalues of the pointers are used for oc-

cupanciesof 1 to N words. Since no empty state is possible,an appropriate initial state requires

additional logic and the usefulnessof this schemeis limited.

2.2.1 Metho ds for using all N words

Adding a state bit

There are two basic methods for using all N + 1 memory occupancy states. The �rst

involvesadding a state bit to handle previously unrepresentable casesand keeptrack of the pointer

history. For example, in the situation shown in Figure 2.6, the extra state bit could be used to

indicate when the memory was full to distinguish the two caseswhen both addresspointers were

equal. Similarly, the schemedepicted in Figure 2.7 could usethe additional state bit to indicate the

empty condition.

Increasing the size of the address poin ters

The secondmethod is to increasethe sizeof the addresspointers by onebit. This additional

bit increasesthe range of the pointers from modulo N to modulo 2N . Read and write pointers that

are equal modulo 2N unequivocally indicate an empty FIFO. On the other hand, read and write

pointers that di�er by N modulo 2N indicate a full FIFO since the wr ptr must be N ahead of

rd ptr . This method will normally be simpler to implement than the method of adding a state bit.

Empty detection is straightforward and full detection is accomplishedby an equivalencetest of the

lower log2(N) bits and an XOR of the addresspointers' MSBs. For correct operation, the following

CHAPTER 2. SINGLE-CLOCK FIFOS 11

PSfrag replacements

FIF O Write

FIF O

Write

Write
Port

In terface

Memory

Logic

Logic
Full

Pro ducer

� 1

� 2

� pr oducer

Figure 2.8: FIFO to producer write path showing multi-clo ck latency from ful l signal to halt in
write data stream

inequalities must hold at all times.

rd ptr � wr ptr � rd ptr + N (2.1)

2.2.2 Reserv e space

Some applications require multi-cycle delays between a FIFO and the interfacing data

producer or consumer. When multiple clock cycles separate the FIF O from the consumer, there

is a possibility that data requests will be made to the FIFO that it will not be able to ful�ll.

This normally does not present a problem since a valid signal accompanying read data prevents

the misinterpretation of unful�lled read requests. However, when multiple clock cycles separate

the FIFO from the data producer, the possibility of overo w exists if special precautions are not

taken. Figure 2.8 illustrates this caseshowing the critical path from the ful l detection logic through

the data producer's logic, and back to the FIFO's write port. The total delay in clock cycles

is � total = � 1 + � pr oducer + � 2. Prevention of overo w can be accomplishedin one of two ways:

either by the addition of a secondaryFIFO of at least � total words, or by the FIF O signaling the data

producer to stop writing when its occupancy reachesN � � total = Reserve words|whic h reduces

the e�ectiv e sizeof the memory under most conditions. Becauseof its simpler implementation, the

secondmethod is generally preferred.

2.2.3 Arithmetic hardw are

For the caseof addresspointers of length log2(N) + 1 bits, and a non-zeroReserve space,

we desiresimple logic to determine when to signal the data producer to stop sendingdata (wr hold).

CHAPTER 2. SINGLE-CLOCK FIFOS 12

Producer Module FIFOWrite
Interface

Read
Interface

Consumer Module

Data Data

Control Control

Control Control

Figure 2.9: System architecture using a FIFO module for communication

Sincewr ptr � rd ptr is the occupancyof the memory, the signal threshold is then,

wr ptr � rd ptr � N � Reserve (2.2)

wr ptr � rd ptr + Reserve � N (2.3)

We prefer the form of Equation 2.3 becausewe can easily test whether a value is greater than or

equal to N when using log2(N) + 1 bit words by checking the MSB of the sum|the inequality is

true if the MSB = 1. The left hand sideof Equation 2.3 is calculated with a three-input, log2(N) + 1

bit adder. While converting values to signed 2's complement form will certainly work, it is not

required and simple unsignedvalueswill work properly for all casessincemodulo 2N arithmetic will

e�ectiv ely map all negative valuesto their value plus 2N .

Other required arithmetic logic for the read and write sidesis roughly equivalent. Binary

incrementers are neededfor addressgeneration and comparators are neededfor empty (and full

if reserve spaceis not required) detection. In somecases,a value indicating the occupancy of the

memory is desired. Hardwareto calculatethis di�erence canbesharedwith the previously-mentioned

adder.

2.2.4 Comm unication proto cols

When considering the interface protocol, a producer module refers to a module which is

transmits data and a consumer module refers to a module which is receives data. Accordingly, a

FIFO module lies in between a producer and a consumer module, with the FIF O write circuitry

interfacing to the producer module and the FIFO read circuitry interfacing to the consumermodule.

This is shown in Figure 2.9.

A channel refers to a communication connection between two modules, and the points of

connectionare called ports [11]. The FIFO shown in Figure 2.9 hastwo channels. The write channel

refers to the channel connectinga producer to the input (write) port of the FIFO. The read channel

refers to the channel connecting a consumerto the output (read) port of the FIFO. Each channel

CHAPTER 2. SINGLE-CLOCK FIFOS 13

has one control line going in each direction.

A communication channel should always have one active port and one passive port [11].

One concern in the interface design is deciding which port will be passive and which port will be

active. For the FIFO, each channel is independent and the choicein port assignments is arbitrary , so

long as each channel has oneactive and onepassive port. For example, looking at the write channel

there are two choicesfor the signalling convention. One choice is that the control line leaving the

FIFO is active and the control line leaving the producer is passive. The terms request and valid,

respectively, �t well with this convention. Sincethe FIFO is the active port, any time it wants data

it will indicate this on the request line. It will then wait for the producer to send it data. The

producer indicates this event with its valid line. In the secondcase, the FIF O write interface is

the passive port and the producer is the active port. In this situation the producer will indicate

that it wants to senddata using the valid line. When the FIFO is ready to accept the data it will

acknowledgereceipt of this data with its control line.

The samesituation existson the read channel, with the only di�erence being that the FIF O

read interface is producing data and the consumeris receiving data. The formation of the read port

signalling convention can be done in a manner analogousto the write side case.

From the FIFO designstandpoint, there is no inherent advantage to onesignalling approach

over another, so the target application will likely determine the choice. Table 2.1 summarizesall

the possiblestates of one interface channel. The data valid and data request columns indicate the

control line status in each of the cases. The consumer is assumedto have the active port in this

case. The �nal two columns are mutually exclusive and represent the equivalent state of a FIFO

if the interface state in the far left column were mapped onto the write channel or read channel,

respectively. For example, the secondrow of Table 2.1 shows the casewhere the producer has no

data and the consumer wants data. The write side of the FIFO is always a consumer, so if this

state were mapped onto the write channel it meansthat the producer (the upstream module) has

no data, but the FIFO write interface can acceptdata, so the FIFO is consequently not full. This is

noted in the column showing the equivalent FIFO state if the interface were mapped onto the write

channel. Alternativ ely, if this state were mapped onto the read interface of the FIFO, the FIF O

state would be empty sincethe read side of the FIFO is always a producer and the producer has no

data. As noted, theseinterfacesare not mapped onto the read and write channelsat the sametime,

even though they are listed in the samerow.

Having a reservespaceincreasesthe number of possibleconditions within the write interface

CHAPTER 2. SINGLE-CLOCK FIFOS 14

FIFO state if FIF O state if

Data Data interface is mapped interface is mapped

Interface State Valid Request to write channel to read channel

1) Producer has no data, No No Full Empty

Consumerdoesn't want data

2) Producer has no data, No Yes Not full Empty

Consumerwants data

3) Producer has data, Yes No Full Not Empty

Consumerdoesn't want data (not receiving) (not transferring)

4) Producer has data, Yes Yes Not Full Not Empty

Consumerwants data (receiving) (transferring)

Table 2.1: Four primary states of a generaldata transferring interface

Data Data FIFO

Interface State Valid Request State

1) Producer has no data, No No Not Receiving data

FIFO doesn't want data (FIF O Full or in reserve)

2) Producer has no data, No Yes Not Receiving data

FIFO wants data (Not full and not in reserve)

3) Producer has data, Yes No Receiving data

FIFO doesn't want data into reserve space

4) Producer has data, Yes Yes Receiving data

FIFO wants data into non-reserve space

Table 2.2: States of a data transferring interface with equivalent FIFO state when reserve spaceis
utilized

logic of the FIFO. Table 2.2 enumerates thesechanges. Since the reserve conditions generally only

apply to the write side of the FIFO and the write side is always a consumer, the consumerif now

call the FIFO in the leftmost column. To avoid overo w conditions, no data can be requesteduntil

there are at least reserve empty locations in the FIFO. Accordingly, the e�ectiv e size of a FIFO

with reserve spaceis reducedto the number of FIFO memory locations minus the number of reserve

locations.

15

Chapter 3

Synchronization

One of the fundamental problems in systems lacking a single global timing referenceis

correctly ordering events. This processis generally referred to as synchronization. Somesystems

operate with no senseof global timing, and instead operate in direct responseto signal transitions.

This is referred to as asynchronous circuit design [11]. In these cases,synchronization is often

unnecessary[12]. However, an alternativ e method for circuit design employs a global clock signal,

which carries timing information for all signals within a speci�c area. A clock domain is speci�ed

as an area where all the signalsutilize the sameclock signal for their timing reference[12]. Circuits

that operate in referenceto a speci�c clock are referred to as synchronous circuits.

Systemsdesignsof the past and present day are typically built to be synchronous. However,

as mentioned in Chapter 1, maintaining this trend is becoming di�cult and expensive, so future

designswill likely need alternativ e approaches to solve the global timing issue. One option is to

move to fully asynchronous design,but, as mentioned, a complete transition to this style is unlikely

in the near future. To overcomethese obstaclesa more moderate design paradigm is to break the

systemup into multiple clock domains,and not maintain a speci�c timing relationship betweenclock

domains. Systemsof this type are alsocalled Globally-Asynchronous, Locally-Synchronous (GALS) .

Chapiro [4] is often cited as one of the �rst in-depth investigators of GALS architectures.

In general, the timing relationship between a signal and a clock can be cast into one of

�v e categories[12] [1]: 1) Synchronous, where the signal matches the clock in both frequency and

phase; 2) Mesochronous, where the signal is the samefrequency as the clock, but has a constant

phase di�erence; 3) Plesiochronous where the signal is at a frequency close, but non-identical to

the clock frequency, which implies a varying phasedi�erence; 4) Periodic, where the signal has an

CHAPTER 3. SYNCHRONIZATION 16

unknown relationship to the clock, but is periodic in nature; and 5) Asynchronous, where the signal

is completely unrelated to the clock and signal transitions are arbitrary .

3.1 Metastabilit y

Metastability is a fundamental problem present when interfacing asynchronous blocks [12]

[13]. Synchronous systemsrequire signals on the inputs of registers to be stable around the active

edgeof the clock signal. We refer to this time period as the critic al window, and its boundariesare

set by the setup and hold time requirements of registers. If this requirement is not met, the value

may not be accurately sampled by the system and the output behavior of the sampling element is

unknown. This results in the output of the sampling element resolving to one of three states: 1)

the input value before the transition, 2) the input value after the transition, or 3) an intermediate

value known as the metastable point. This intermediate state exists in all sampling elements with

bistable components [14]. This state is not stable due to the high gain of the feedback loop, but

the responsetime of the ip-op leaving this state is non-deterministic [15]. If a sampling circuit

with no regenerative element is used and timing is violated, intermediate values that are sampled

(i.e., the input is sampledsomewherealong the transitioning data edge)will be held internally and

not resolve to a logical value until a new value is sampled.

Synchronization is usedto avoid, or reducethe probabilit y of, metastabilit y. The strategy

utilized depends on the timing relationship of the clock and data signal(s), as detailed in the �v e

categoriesabove. Many examplesof this can be found in the literature [12] [16] [17]. In general,the

more that is known about the relationship betweentwo signals, the easierit is to synchronize those

signals.

Metastable output values are generally in the logically unde�ned region and can result

in error propagation through a synchronous system. Due to its random nature, these errors are

infrequent, di�cult to characterize and hard to detect [15]. Accordingly, special care must be taken

to avoid metastabilit y when sampling asynchronous inputs. It should also be noted that metastable

conditions can also occur due to pulse width violations of the clock signals [15] [18].

3.1.1 Background

Someof the earliest discussionsof system failures due to metastabilit y were published in

the mid 1960's [19]. Since then this topic has been extensively published making a comprehensive

survey of metastabilit y literature challenging. Accordingly, this is outside the scope of this thesis,

CHAPTER 3. SYNCHRONIZATION 17

and instead a brief overview of someimportant literature in this area will be given. Much of the

pioneering work to analyzemetastabilit y was done in the 1970's. Molnar and Chaney recordedand

discussedanomalousip-op responsesto logically unde�ned input conditions [20]. P�echou�cek [15]

attempted to addressthe issueof predicting and modeling a device's metastabilit y characteristics

and also discussedtechniques for reducing the probabilit y of synchronization failure. Hurtado and

Elliot [14] addressedthe metastabilit y of bistable devicesfrom a theoretical standpoint and showed

that bistable devicesmust have a metastable state, and that such devicescan be driven into this

region and remain there for an unbounded amount of time. Marino [21] developed a generalized

model for metastabilit y in digital systemsand demonstratedthe unavoidabilit y of metastableopera-

tion when using fully asynchronous inputs to bistable devices.Hohl et al. [22] looked into predicting

the probabilities of synchronization failure basedon simulation and theoretical analysis. Flanna-

gan [23] investigatedhow to optimize CMOS circuits for synchronization performance. Horstmann et

al. [18] researched synchronization issuesin custom digital CMOS ASIC designs,including proposing

ways to improve reliabilit y of such cells. Portmann and Meng [24], consideredthe e�ects of bu�ering,

technology scaling, and power supply on metastabilit y characteristics. They also show simulation

methods for approximating metastabilit y device parameters. Jex and Dike [25] developed a high-

performance,BiNMOS latch with good metastabilit y resolution characteristics. They also give an

overview of architecture techniques for reducing the probabilit y of failure, and a straightforward

simulation technique for determining a synchronizer's � parameter. Dike and Burton [26] built upon

these�ndings and also consideredthe e�ect of Miller capacitanceand thermal noiseon metastabil-

it y characteristics. Ko and Balsara [27] simulated, measuredand compared ip-op metastabilit y

parameters of six ip-op architectures using the method of Portmann and Meng [24]. Kinniment

et al. [28], develop a more complex model for estimating MTBF and further investigate the e�ects

of thermal noise on metastable behavior. Semiat and Ginosar [29] implemented several synchro-

nizer architectures on a programmable logic device, took measurements to determine metastabilit y

characteristics and comparedthe various architectures.

Solutions to remove the metastabilit y problem have been published, but many have limi-

tations [30] and can result in circuit failures if not utilized properly [12] [13].

3.1.2 Basic failure mo del

In theory, a devicecan remain in an intermediate metastablestate for an in�nite amount of

time. However, in practice the circuit resolves to a valid state after somenon-deterministic period.

CHAPTER 3. SYNCHRONIZATION 18

tresponse_FF

Clock Edge
Arrival

tsetup thold

Critical Window

(time)

New Data
Latched

tmeta

New Data
Not Latched

(time)

Normal
response times

Figure 3.1: Generalized ip-op response time versus data arrival time with referenceto a clock
edgearrival [11] [24]

Figure 3.1 shows the approximate relationship between input event transitions and the resulting

ip-op resolution time. A useful and prevalent approximation found in the literature for modeling

the averagefailure rate due to metastabilit y is shown in Equation 3.1 [11].

(M ean Time B etween F ail ur es) M TB F =
et r =�

T0 f c f i
(3.1)

The variables in Equation 3.1 are de�ned as follows: f c is the clock frequency, f i is the input data

event frequency, and t r is the allowed settling time beforesampling. The remaining two parameters

� and T0 are device dependent, and need to be experimentally determined [11]. The parameter

� is the exponential time constant of the metastabilit y decay rate, and is sometimescalled the

metastabilit y time constant [25]. The T0 parameter is the asymptotic width of the time aperture in

which the device can enter the metastable state, normalized to a responsetime of zero [25]. Since

no real device has a zero responsetime, the T0 parameter has no practical meaning, and is simply

a mathematical characterization of the device'ssusceptibility to entering the metastable state.

3.1.3 Final remarks

Metastabilit y is di�cult to model and measure. This is primarily causedby the fact that

true metastable events are probabilistic in nature, making them hard to quantize and capture.

Becauseof this, metastabilit y doesnot exist in RTL or logic simulations, and it is di�cult to model

in numerical circuit simulators becausemetastableevents are normally extremely rare and extremely

CHAPTER 3. SYNCHRONIZATION 19

small time steps are needed,requiring high numerical precision. In order to measuremetastabilit y

parameters,specialhardwareand simulator test circuits must beconstructed [26]. In addition, recent

results suggestthat devicespeci�c metastabilit y parameterscan vary over operating conditions [28]

making it more elusive and di�cult to predict. Even when hardware is available, metastabilit y is

di�cult to test and measurebecauseof its intermitten t and rare occurrence in normally-designed

circuits.

3.2 Synchronization Strategies for Async hronous Inputs

In the caseof a fully asynchronous input, no information is available regarding timing of

signals, making synchronization the most di�cult. Solutions to synchronize asynchronous signals

fall into one of two categories: increasingtime for resolution and pausing the clock [11].

3.2.1 Increasing metastabilit y resolution time

The most prevalent model for the probabilit y of a failure due to metastabilit y in a bistable

element is an exponentially decaying function [11].

P(ts > t r) =
T0

T
� e� t r

� (3.2)

This model is shown in Equation 3.2, where t r is the bounded time window allotted for resolving

an intermediate output value and ts is the actual time required for the signal to resolve. The two

device parameters, t0 and � , are intro duced in section 3.1.2. Accordingly, increasing the resolution

window decreasesthe probabilit y of synchronization failure exponentially . This equation can be

extended to estimate the Mean Time Between Failures as given in Equation 3.1. Synchronization

failure generally meansthat a synchronizer cannot produce a stable logical output by the time the

systemusesits output. The key result from both of theseequationsis that increasingthe resolution

time can greatly improve the abilit y of a synchronizer to avoid failures.

The most basic form of synchronizer in this category is the two ip-op synchronizer [12].

Extensions of this idea are numerous, including pipeline synchronization [31], where more memory

elements are placed in seriesto further increasethe resolution window. Taking the most basic case

of one synchronizing element, the MTBF formula can be calculated from Equation 3.1. The form

of the equation remains the same,the only variable directly a�ected is the allowed resolution time

(t r). For the single element synchronizer, t r can be determined by Equation 3.3, where Tcl k is the

clock period, t f f is the propagation delay plus setup time of the sampling element, and t l ogic is the

CHAPTER 3. SYNCHRONIZATION 20

1

Clock

2 N

Synchronizer

Async Input Sync Output

Figure 3.2: An N element chain synchronizer circuit

delay of any logic before the next memory device.

t r = Tcl k � t f f � t l ogic (3.3)

This equation can be generalizedto calculate t r for a pipelined synchronizer of N elements

as shown in in Figure 3.2. From Equation 3.3, a generalizedequation for determining the resolution

time for this setup can be developed. In this case, the memory elements will be assumedto be

ip-ops since they are commonly used as the sampling elements in synchronizers. If N ip-ops

are chained together, the synchronizer will now have roughly N clock periods to resolve possible

metastable events. With the assumption that the ip-ops are directly tied together, t l ogic will

equal zero for all but the last memory element. Therefore, only one t l ogic must be subtracted.

The propagation delay and setup time for each of the N ip-ops must also be subtracted from the

resolution time. The result is shown in Equation 3.4. In most systems,the output of the synchronizer

is generally assumedto be available after only a t f f delay, so the remainder of the cycle can be fully

utilized for other logic. In this form, t l ogic + t f f is equivalent to one clock cycle (Tcl k), thereby

reducing Equation 3.4 to the oneshown in 3.5. The primary disadvantage to this setup is that N � 1

additional cyclesof latency are added even when no metastabilit y occurs.

t r (N) = N � (Tcl k � t f f) � t l ogic (3.4)

t r (N) = (N � 1) � (Tcl k � t f f) (3.5)

There many possiblemethods for increasingthe resolution time. An alternativ e to pipelin-

ing ip-ops in seriesis to usesa divided clock, which also reducesf c and f d. This method gives

a better t r for the sameamount of delay, becauseonly one t f f is subtracted instead of N � t f f .

However, it reduces throughput in addition to the increased latency. Another method, called a

parallel synchronizer [25], usesalternately enabled parallel ip-ops. Each ip-op is clocked at

a slower rate, but on any given clock cycle only one of the ip-ops is supplying the output and

only one is sampling the current input. The remaining ip-ops are resolving any metastabilit y

CHAPTER 3. SYNCHRONIZATION 21

that occurred at their respective sampling time. The output is multiplexed to choosethe currently

enabled output. This results in a larger t r than pipelining without the reduced throughput of the

divided clock method. However, it requiresmore hardware and is more complex becauseit requires

properly timed enablesignals.

The general trade-o� for theseschemesis increasedarea and/or latency in exchangefor a

lower mean time betweenfailures. It should also be noted that theseschemesdo not eliminate the

probabilit y of a metastable event; they only reduceit.

Metastable imm une synchronizers

In the above examples,a �xed window is given for the metastabilit y to resolve before the

data is sampled. An alternativ e approach is to isolate the metastabilit y within the synchronization

module and then allow asmuch time asnecessaryfor the metastabilit y to resolve [32]. This prevents

indeterminate valuesfrom propagating past the synchronization module. This type of synchronizer

doesnot provide the new stable output any sooner, nor doesit provide a better de�ned binary value

than a non-immune synchronizer [25]. In fact, due to the additional circuitry , these synchronizers

have extra loading and delay, so it usually takesa longer period of time to resolve than a simple non-

immune synchronizer [25]. An additional concern is the non-deterministic delay that is intro duced

into the system.

3.2.2 Pausing the clock

The secondcategory of solutions usespausible clocks clocks{also called stoppable clocks

or stretchableclocks{to avoid metastabilit y. In one variation of this technique, an arbiter circuit

decides(usually with a mutually exclusive element) the precedenceof a local clock edge or data

event occurring in the critic al window. The technique does not prevent metastabilit y, but isolates

metastabilit y to the arbiter circuit. During the arbitration period, the sampling clock is pauseduntil

the metastabilit y resolves. P�echou�cek [15] and Chapiro [4] and were someof the earlier presenters

of this technique, and many have sinceextendedthis idea. Yun and Dooply [33], developed pausible

clock control circuits, which controlled asynchronous wrapper logic and used arbitration to avoid

simultaneous data and clock events. Muttersbach et al. [34] built upon this idea, but aimed for a

more scalableand portable design methodology by utilizing a di�eren t implementation. Moore et

al. [35] developed a similar implementation, but used arbitration to avoid unnecessarypausing in

order to increasecommunication bandwidth by reducing latency. Thesetechniquesusepassive I/O

CHAPTER 3. SYNCHRONIZATION 22

ports, which allow the asynchronous data module to control the o w of data. In theseschemesI/O

operations must be mutually exclusive to avoid conicts.

An alternativ e is to use a direct communication scheme. This removes the need for arbi-

tration in the clock oscillator, by only allowing the synchronous module to control communications.

Bormann and Chueng [36] wrapped synchronous modules with asynchronous interface modules uti-

lizing stretchable clocks with a direct communication scheme. Myer [37] used a similar scheme in

interfacing asynchronous logic into a synchronous pipeline. Recently , Kesselset al. [38], proposeda

clock synchronization style that openedup the ring oscillators and directly synchronized the clocks.

The main advantage of direct communication is that it does not require arbitration in the clock

oscillator. However, arbitration may still be required when there are multiple I/O ports. Arbitra-

tion free synchronization has the limitation that when the synchronous block requires data it must

pauseand remain pauseduntil the request is granted. This can lead to non-deterministic delays in

complex systems.Additionally , no computation can be performed during this period sincethe clock

is paused,potentially reducing system performance.

While the exact implementations and clock pausing details vary, the main bene�t of using

pausible clocks over the previous schemesis that it can reduce the probabilit y of synchronization

failure to zero. However, thesesolutions alsorequire that each module have a locally generatedclock

that canbe locally controlled. Also, in caseswherearbiters areusedto resolveasynchronousconicts,

the systemmust be able to tolerate non-deterministic delays, sincethe time taken for arbitration is

unpredictable and unbounded. In general,when the clock is pausedthe entire system is frozen and

must wait for arbitration to complete before any work can be done. This becomeseven more of a

factor when interfacing to multiple asynchronous signals. Not only are more advanced arbitration

schemesrequired, but each signal can causea conict. This results in increasedarbitration time as

the number of inputs grows. Care also must be taken to avoid system deadlock when modules are

pausing their clocks. An additional concernis the di�cult y in pausing the clock on the correct cycle

in applications that have large synchronous blocks with complex clock bu�ering networks [39] [40].

3.3 Synchronizing Multi-Bit Words

There are potential problemssampling a multi-bit word using the synchronization methods

that have �xed resolution time windows (sec. 3.2.1). This is true even without considering inter-

mediate metastable output values. This results from real systemshaving varying amounts of delay

per wire and the unpredictabilit y of the logical result when timing constraints are not met on the

CHAPTER 3. SYNCHRONIZATION 23

Transmit Clk

Critical
Window

b3

b2

b1

b0

?

?

?

?

Sampled
Value at t1

b3

b2

b1

b0

1

0

1

?

Receive Clk

1
0

1

0

1
0

1

1

0

0

0

0

1

1

1

1

t1t0

1

1

1

1

Sampled
Value at t0

0

0

0

0

Figure 3.3: Sampling of a multi-bit transition word and a single-bit transition word

sampling device. The consequenceis that it will be possibleto sampledi�eren t signalsat di�eren t

times. This caseis illustrated in Figure 3.3 where two asynchronouswords are sampledby a clocked

module.

The top exampleshows the worst casewhere all bits transition within the critical window

and every bit could independently take on the old value or the new value|after a su�cien t metasta-

bilit y resolution period. In the bottom example, only one bit of the word transitions in the critical

window and thus only one bit in the word has an unpredictable resolution value. Note that one

resolution value (0) results in the previous word and the other resolution value (1) results in the new

word|no erroneouswords are possible!

It is important to further note that this property holds regardlessof the relative frequencies

of the read and write clocks. In the lower example, the \old" value of the receive register is 0000

and while the valueschangemore than oncebefore being read a secondtime, only one bit changes

during the critical window and regardlessof how the unstable bit resolves,a valid word will always

be read. Details of how this property is integrated within a dual-clock FIFO designwill be covered

in Chapter 4.

It should be noted that when the timing relationship betweenthe two communicating units

is not asynchronous, alternativ e techniques can be employed to synchronize multi-bit vectors [12].

Oftentimes, such as in the mesochronous case, these techniques can result in the probabilit y of

metastabilit y going to zero.

24

Chapter 4

Dual-Clo ck FIF O Arc hitecture

Interfaces that require rate matching between their read and write sidesand are clocked

by unrelated clocks, require the useof a dual-clock FIFO. In somecases,the burst patterns of both

producer and consumerare well characterized and bounded and the special techniquesdescribed in

this sectionare not required, but this is not the generalcase.The focusof this sectionis on a exible

dual-clock FIFO architecture which supports data transfer acrosstwo clock domainswith completely

arbitrary phase and frequency relationships. Additionally , both clocks can change dynamically

including dynamic frequency scaling and inde�nite pausing. More speci�c implementation details

for the physical hardware designof a dual-clock FIFO are discussedin Chapter 5.

4.1 Background

FIFO architectures �nd frequent use in situations where data must be passedbetween

unsynchronized clock domains. Dally and Poulton [12] and Balch [6] present high-level views of the

structure, but details of dual-clock FIFO designare lacking in the literature. Siezovic [31] presents

a linear FIFO architecture for data synchronization known aspipeline synchronization. Becausethe

architecture is linear, the limitations presented in section 2.1 regarding linear FIF Os apply.

Fully asynchronous FIFOs are common in the literature, but these designsdo not utilize

clocks, and therefore are di�cult to apply in the caseof synchronizing data betweenclock domains.

Examples include fully asynchronous linear [41] and square [42] FIFOs, and investigations into

improving the asynchronous control [9] of these FIFOs. An alternativ e FIFO architecture for use

in limited dual-clock applications is presented by Chelceaand Nowick [43]. While the architecture

robustly transfers data acrossunequal clock domains, the rate di�erence must be known a priori

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 25

to guarantee proper operation. Accordingly, dynamic frequency scaling is not supported. The

architecture also presents scalability challengesdue to the high fan-out of internal control signals.

Additionally , it should be noted that the two ip-op control synchronizer in the design does not

guarantee complete avoidance of failure, especially at high-frequencies. A �nal referencethat is a

more informal description of an approach to designing a FIFO similar to the one presented here

is given by Cummings [44]. This paper outlines one approach to dual-clock FIF O design with

an emphasis on writing synthesizable HDL for this type of FIFO. Many background details on

FIFOs and synchronization are not covered and the conceptsof reserve space,pipelining and other

techniques required for integration into real hardware are not covered.

4.2 Arc hitecture Details

A block diagram of the proposedcircular, dual-clock FIFO implementation is shown in Fig-

ure 4.1. The given dual-clock FIFO synchronizesdata through its memory core and write and read

circuitry operate in di�eren t clock domains. The synchronization task then involvespassingcontrol

information between domains. This meansthat no data manipulation is required and bits within

each data word are guaranteed to be uniformly synchronized. The primary challengein designinga

dual-clock FIFO comparedto a single-clock FIFO is deciding what information to transmit between

clock domains and how to synchronize that data. Otherwise, the architecture is very similar to its

single-clock counter-part. The fact that each side of the FIFO is its own synchronously designed

module makes the dual-clock architecture attractiv e becauseits logical design and veri�cation is

more straightforward than one involving fully asynchronous circuits.

4.2.1 Address and control information

Clearly, the key issuewith a dual-clock FIFO is determining what control information to

passand how to passit betweenunrelated clock domains. The method chosenhere is to passread

and write addresspointers. The pointers are increasedto log2(N) + 1 bits to allow straightforward

useof all N memory words. This still doesnot solve the problem of safely transferring thosevectors

acrossclock domains. As discussedin section3.2, there are two generalcategoriesof synchronization

methods, either pausingthe clock or increasingthe metastabilit y resolution time. Many applications

of interest do not allow local clock pausing,sowe excludepausibleclock solutions asa solution in this

case.This doesnot present a problem as we can reducethe probabilit y of metastabilit y arbitrarily

low by extending the time resolution window as discussedin section 3.2.1. However, as noted in

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 26

mm

Adder

Full
Logic

Data_in Data_out
Data In Data Out

Wr En Rd En

Wr Addr Rd Addr

Binary Incrementer
Increment

address out
Full

Gray to
Binary

Converter

Sync

Control
Logic

Binary to
Gray

Converter

Wr_ptr Rd_ptr

Equivalence

Empty

enable

Wr_hold

Clocked by write clock

Wr_valid

Binary to
Gray

Converter

Gray to
Binary

Converter

Binary Incrementer
IncrementAddress

Reserve

Clocked by read clock

Sync

SRAM
m x n

Delay for
memory read

latency

Rd_req

+

+

-
(MSB)

Delay for
memory

write latency

Figure 4.1: Detailed diagram of dual-clock FIFO architecture

section 3.3, multi-bit data must allow at most one bit transition between data words for reliable

transmission. It is most convenient and natural to perform arithmetic manipulations on binary

data. Unfortunately, during normal operation of the FIFO, the addresspointers will frequently

increment, causinga binary encoded value to have an arbitrary|often greater than one|n umber of

bit transitions. For this reason,addressesare transformed to Gray code (details in sec. 5.4) before

being passedacrossthe clock boundary to prevent multi-bit transition failures. The addressesare

converted back to binary for further processingoncethey are synchronized into the other domain.

As discussedin section 3.3, even though Gray coded values are used and the probabilit y

of synchronizaton failures (i.e., the propagation of logically unde�ned valuespast the synchronizer

module) are made extremely low, the absolute value of the sampledsignal still cannot be predicted

with certainty. As shown in Figure 3.3, one of the bit values is still potentially unknown. However,

it is certain that the the vector will either represent the old value or the new value. The dual-clock

FIFO architecture naturally solvesany conict that this may normally present. In this architecture,

the control vector represents the location of the addresspointer and is usedby the other side of the

FIFO. If the sampled addressresolves to the new value there is obviously no problem. The case

where the old value is retained also does not present a problem becauseit will be interpreted by

the side receiving the addressas the casewhere the pointer has remained in its old location and

no actions (i.e., readsor writes) have occurred. While this potentially adds latency to the system,

it will not causeany data to be overwritten or incorrectly read. Eventually|lik ely on the next

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 27

sampling edge|an updated value will be received. Accordingly, barring a synchronization failure

this method of passingdata betweendomains is extremely robust.

Reducing the probabilit y of synchronization failure to an acceptable level needs to be

addressedwithin the synchronizer. The implementation of the addresssynchronization circuit is

exible and the exact design depends on the requirements for a speci�c application. For the case

of clocks with arbitrary phaseand frequency, a robust synchronization technique is required. The

simplest su�cien t synchronizer uses multiple series registers. If reasonably metastable-resistant

registersare used,the probabilit y of failure can be madeextremely small with 2 or 3 seriesregisters

[11]. For increasedexibilit y, this architecture allows several parameters to be made con�gurable,

including the choiceof synchronization circuit|whic h determinesthe metastabilit y resolution time.

This allows the latency to be modi�ed independent of the frequency at which each clock domain

is being operated, which in turn enablesan optimal balance between latency and synchronization

failure without redesigningthe circuit. Further details of the synchronizer used here are discussed

in section 5.3.

An additional concernwhen sendingaddressdata to the read side is any latency associated

with the memory core. This prevents the read side from reading data out of a memory location

before it has beenwritten. Likewiseit prevents the write side from writing data before it has been

read. Any necessarydelay can be inserted by adding registers just before the data passesinto the

synchronizer circuit.

4.2.2 Reserv e space

Reserve space is also utilized in this design to account for the transmit delay in both

directions and the write logic of the data producer. A di�erence module is used to determine the

current spaceleft in the FIFO by determining the distancebetweenthe two pointers. This di�erence

is then comparedwith the reservevalue. If the di�erence is lessthan or equal to the reserve amount,

it is clear that the FIFO must signal the producer to stop sendingdata. Any data left in the pipeline

between the producer and the FIFO is safely written to the reserve spacepreventing overo w. As

discussedin section2.2.2, including reserve spacereducesthe e�ectiv e sizeof the FIFO. The reserve

spacemay not actually contain valid data even if the FIFO is not requestingdata. Additional logic

can be added to intelligently request small bursts of data to utilize someof the reserve spacewhen

it is unused. However, this increasesthe complexity of the FIFO in terms of design time and area

and also increasesthe potential for an overo w condition if not designedcorrectly.

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 28

4.2.3 Comm unication in terface

Details on the interface design choices for circular FIFOs and background on two-line

signalling are presented in section 2.2.4. As discussedabove, the dual-clock FIFO presented here

utilizes reserve spaceon the write sideof the FIFO. To increaseproducer e�ciency , the write channel

should adhere to the convention where the FIFO write interface control signal is the active port.

This is a consequenceof the latency that exists betweenthe producer and the consumer. In general,

an active port waits for a responsefrom the passive port to determine its next step. In this case,

the upstream producer is multiple clock cyclesaway from the FIFO write logic. The write logic can

directly determine when the FIFO cannot accept any more data. If the FIFO's port is active, it

can immediately transmit this information on its control signal (wr hold) and the latency it takes

the producer to receive this indication|and any data already in transit to the FIFO|is stored in

the reserve space. If the producer were chosento be the active port, every time it wanted to write

to the FIFO it would have to stall. The stall length would be equal to \r eserve" cycles,becausea

write would require the write control signal (wr valid) to be transmitted to the FIF O, the FIFO to

processthe write attempt and then send back a reply. As discussedin section 2.2.2, each of these

can potentially take several cycles. In someapplications, this stall delay may be acceptable,but in

general,processingmoduleswant to be asactive aspossible. Accordingly, in this designsomeFIFO

spaceis forfeited for higher activit y in the producer.

On the read side,choosingoneactive port over the other hasno clear advantage. Therefore,

it will be determined by the target application. In onescenario,the FIFO read control output signal

(empty) is the active port. In this case,it will always indicate if the FIFO is empty and the consumer

should not request data on its control line (rd request) until the FIFO has indicated that it is not

empty. Alternativ ely, if the consumer is the active port, it can request data at anytime and the

FIFO will respond by signalling whether the request was granted using its control line (empty).

29

Chapter 5

Hardw are Implemen tation

This chapter coversthe circuit level designand layout of a dual-clock FIF O module usingthe

architecture intro duced in Chapter 4. The primary hardware units that are required for the design

are a memory array, a synchronization module, a binary incrementer, Gray/binary converters, an

adder for determining the \In Reserve" condition, a comparator, and interface/control logic. These

modules are elaborated upon and discussedbelow. The target application (see Sec. 1.1.1) drove

most of the �nal implementation choicesdetailed in this chapter.

5.1 Design and Veri�cation Pro cess

The design processfor the FIFO consistedof �rst creating a behavioral model in Verilog

that was integrated into a simpli�ed, single-cyclemodel of the AsAP system. NC-Verilog [45] was

used for logical veri�cation of the FIFO and the target system. After logical veri�cation, a cycle

accurate, pipelined version of the FIFO was created. This was integrated into the secondversion of

the AsAP system, which was also pipelined and cycle accurate. Once the logical operation of the

pipelined FIFO wasveri�ed and tested within the system, the �nal hardware designwasperformed.

Structurally accurate models of the hardware modules were created in Verilog and tested to ensure

proper logical operation. At this point, circuit design began with a 0.18 � m standard CMOS

processas the target technology. Accordingly, all area estimates presented in this chapter assume

a 0.18 � m process. The circuits were then layed out in MAGIC [46] and extracted for testing,

with a parasitic capacitancethreshold of 0.1 fF. HSPICE [47] simulations were run on the extracted

layout to verify proper circuit operation over supply and temperature and alsoestimate performance

numbers. IRSIM [48] was also usedon the extracted layout to verify proper logical operation of the

CHAPTER 5. HARDWARE IMPLEMENT ATION 30

modules.

The standard test conditions for reported performancenumbers in this Section are, unless

otherwise speci�ed, a 1.8 Volt supply, typical NMOS and PMOS devicesand an operating tem-

perature of 40� C. To verify low-voltage operation, the circuits were tested with a supply voltage

of 1 V. Output loading for testing individual modules was set to a default of four minimum sized

inverter input capacitances. This was chosenbecausethis represents a fan-out of four (FO4) [2]

load for a minimum sized driver. We sized the PMOS to achieve a balanced rise and fall time for

our minimum inverters, which results in an NMOS width of 5 � and a PMOS width of 13 � . The

default load capacitanceis then approximately 15 fF for a 0.18 � m technology. In somecases,such

as in the memory, more detailed capacitive loading estimateswere made to more accurately predict

performancenumbers and verify proper timing operation.

As mentioned, the overall designgoal is to be able to operate at a high-speed. The rough

speed target for the system under typical conditions is in the high hundreds of megahertz. The

baselinegoal is to guarantee operation with a clock period of lessthan 2 ns (frequency > 500Mhz).

However, ideally the module will operate at higher speeds,so options to increaseperformancewere

generally taken, so long as the designtime impact was not too large. The total ip-op time|clo ck

to output time plus setup time|for the D Flip-op usedin this design(Fig. 5.10) is approximately

250 ps under typical conditions and a minimum F04 load. This leaves the remaining time for all

other logic in one pipeline stage.

5.2 Memory Design

As discussedin Section2.2 the FIFO requiresa memory coreto bu�er the elements as they

passthrough the module. From the architecture standpoint this is a drop-in module, so any type

of memory array can be utilized. For this designa 16-bit by 32 entry memory array is required. To

balancedensity complexity and robustness,a Static Random AccessMemory (SRAM) type memory

was chosen. SRAM architectures and design techniques are extensive, including optimizations for

area, power and speed [49]. For this design, the key requirement was to make the memory robust

and, secondly, try to balance the remaining parameters. It should also be noted that the SRAM

presented here was designedsuch that the sub-cellsand general architecture could be re-used for

other memorieswithin AsAP processors.Accordingly, not all the designchoiceswere made entirely

with the FIFO SRAM speci�cs in mind.

CHAPTER 5. HARDWARE IMPLEMENT ATION 31

Vdd

Vdd

write_n wordline

write wordline

read wordline

SRAM Cell

write bitline read bitline

Vdd

prechrg_n

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

mp

Figure 5.1: Basic ten transistor SRAM cell

5.2.1 SRAM cell

This SRAM core utilizes a ten transistor SRAM cell. A transistor level schematic can be

seen in Figure 5.1. Sizing for the transistors is shown in Table 5.1. The full transmission gate

(m1 and m2) controls writes into the cell and increasesthe speed and robustnessof the circuit.

Additionally , using a tri-state inverter (m5{m8) for the feedback in the cell makeswrites faster and

more reliable. Device m9 is included to reduce the capacitive coupling of the read control line into

one of the primary storage nodes (drains of m3 and m4) and also to isolate that node to prevent

current feedingback into the cell. Both of theseevents can potentially causethe cell to ip its value

during a read. It wasdetermined from circuit simulations that the amount of voltage drop occurring

in the cell without the isolation device was too high, so the extra device (m9) was added. Overall,

thesemodi�cations increasethe cell's robustness,which is a top designgoal. The trade-o� is a larger

cell size.

In the �rst passof the memory design, the read bitline was static and an inverter within

the cell drove it in both high and low through a full transmission gate. After simulating the critical

path of this architecture, it was determined that without making the PMOS devicesvery large they

were too slow to statically pull up the bitline during a read. To alleviate the problem, the read

CHAPTER 5. HARDWARE IMPLEMENT ATION 32

Device Transistor widths (�)
m1 5
m2 5
m3 6
m4 12
m5 5
m6 5
m7 5
m8 5
m9 20
m10 13
mp 24

Table 5.1: Device sizing for SRAM cell of Figure 5.1 (� = 0.09 � m for a 0.18 � m process)

bitline was made dynamic, so it is pulled-up by device mp during the pre-charge phase. Details

of the pre-charge signal generation are shown later. This allows the removal of two large PMOS

devicesfrom the cell reducing cell area. It also removed 32 large P-di�usions from the each read

bitline and replacedthem with only one from the pull-up device (mp). This cut the total di�usion

capacitance on the bitline by roughly one half. Assuming a �ft y percent bitline toggle rate, the

power consumption would not be negatively impacted by using a pre-charged bitline, and should

even improve since the overall bitline capacitancewas reduced. Additionally , the change achieves

the desiredresult of increasingthe overall read accessspeedof the SRAM.

Figure 5.2 shows the layout for the SRAM cell and also how the cell �ts next to its

neighbor cells when the cells are tiled out to form the �nal memory. Each SRAM cell occupies

32.6 � m2 (5.04 � m tall by 6.48 � m wide).

5.2.2 Arc hitecture

W rite circuitry

Once the SRAM cell is designed,the control logic for generating the write wordline, read

wordline and pre-chargesignalsneedsto be designed.This logic is shown in Figure 5.3 For the write

logic, the �rst stage consists of a set of predecoders to better distribute loading within the logic

network and thereby speedup control signal generation. Even with the logic network optimized and

broken up into stageswith high current drive capabilities, it wasstill di�cult to generatea transition

on the actual wordlines within a small propagation delay of the inputs changing. To increasethe

overall robustness,the clock signal was used to gate the two fastest predecode signals. This causes

the wordlines to unassert more closely in time|in terms of gate delays|to the active clock edge.

CHAPTER 5. HARDWARE IMPLEMENT ATION 33

Figure 5.2: SRAM cell layout (BL = bitline , WL = wordline)

This keepsevents ordered properly and helps prevent glitching on the wordlines. Event ordering is

an issue, becausethe write bitline can toggle soon after a clock edge, whereasit takes longer for

the last write wordline to unassert and the next one to assert. If the bitlines begin to toggle too

early, the new value can overwrite the value that was just written to the previously active row of

SRAM cells. To further assistwith ordering events, the write data is re-registeredby a positive edge-

triggered ip-op that is placed after the standard negative edge-triggeredip-ip. This prevents

early transitions on the bitlines, and allows enoughtime for the wordlines to properly settle to their

new values. The waveforms for a writing a \0" and writing a \1" into an SRAM cell are shown in

Figures 5.4 and 5.5 respectively.

CHAPTER 5. HARDWARE IMPLEMENT ATION 34

wr_enable

wr_address

wr_data

2:4 Decoder

5

16

En 2:4 DecoderEn

addr[4]

addr[3:2]addr[2:1]

predecode
 lines

clock

write0
write0_n

write1
write1_n

write31
write31_n

16 16

write bitlines

0123 0123

clock

write wordlines

write30
write30_n

Figure 5.3: SRAM write control signal generation

CHAPTER 5. HARDWARE IMPLEMENT ATION 35

Vo
lta

ge
s

(li
n)

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Time (lin) (TIME)
6n

clk

write wordline

write bitline

"0" is written into cell

SRAM cell

internal

storage node

clk

* full memory wr/rd path -- version 2 -- extracted from magic

Figure 5.4: Simulation waveforms for writing a \0" to an SRAM cell

Vo
lta

ge
s

(li
n)

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Time (lin) (TIME)
8n

clk

write bitline

"1" is written into cell

SRAM cell

internal

storage node

clk

write

wordline

* full memory wr/rd path -- version 2 -- extracted from magic

Figure 5.5: Simulation waveforms for writing a \1" to an SRAM cell

CHAPTER 5. HARDWARE IMPLEMENT ATION 36

rd_enable

rd_address

2:4 Decoder

5

En 2:4 DecoderEn

addr[4]

addr[3:2]addr[2:1]

predecode
 lines

read0

read1

read31

0123 0123

clock

prechrg_n

read wordlines

Figure 5.6: SRAM read control signal generation

Vo
lta

ge
s

(li
n)

-100m

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Time (lin) (TIME)12.2n
12.4n 12.6n 12.8n 13n 13.2n 13.4n 13.6n 13.8n 14n

clk

read bitline

SRAM
read out

register

read "0"

read

clk

wordline

* full memory wr/rd path -- version 2 -- extracted from magic

Figure 5.7: Simulation waveforms for reading a \0" from an SRAM cell

CHAPTER 5. HARDWARE IMPLEMENT ATION 37

Vo
lta

ge
s

(li
n)

-100m

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Time (lin) (TIME)
13.8n 14n 14.2n 14.4n 14.6n 14.8n 15n 15.2n 15.4n 15.6n

read bitline

SRAM

read out

register

read "1"

read

prechrg_n

clk

wordline

clk

pre-charge phase

* full memory wr/rd path -- version 2 -- extracted from magic

Figure 5.8: Simulation waveforms for reading a \1" from an SRAM cell

Read circuitry

The read control logic is shown in Figure 5.6 and is similar to the write control logic.

Predecoders are used in the �rst stage of logic followed by wordline driving logic. The primary

di�erence on the read logic is that the clock gate signal enters directly into the wordline drivers.

This allows the read wordlines to toggle even more closely in relation to the clock. It also generates

a pre-charge signal that has a more optimal timing relationship to the read wordline signals than

the clock signal itself. It is desirablefor power savings to avoid the situation whereboth the pull-up

transistor and a pull-down transistor (in the cell) are \on" at the same time. If the clock signal

is used directly for the pre-charge signal, the time period where both devicesare \on" is on the

order of 400 ps. With the given topology there is a still a small period time|appro ximately 150

ps|where the two signalsdo overlap. There are likely possibilities to further minimize this conict,

however, due to design time constraints this was deemedto be an acceptableamount of overlap.

The waveforms for a reading a \0" and reading a \1" from an SRAM cell are shown in Figures 5.7

and 5.8 respectively. Weak PMOS keepers that can be turned \on" and \o�" with a con�guration

bit are included in the design. These can be activated to compensate for the droop in the read

bitline when the pull-up deviceis \o�" and no cellsare pulling the bitline down. This is particularly

CHAPTER 5. HARDWARE IMPLEMENT ATION 38

useful for very slow speedoperation or if the PMOS mobilit y is low after fabrication.

Performance

To more robustly test the �nal layout of the SRAM, additional capacitive loading was

added into the extracted HSPICE circuits to better represent the large wire loads presented in the

memory. Additionally , low-supply voltage operation wasveri�ed by running simulations at 1 V. The

circuit operatescorrectly with this low-voltage supply at speedsof up to 300Mhz. The �nal SRAM

memory core has approximately 30,500� m2 of active area and the smallest rectangle it occupiesis

approximately 35,000� m2 (202 � m tall by 175 � m wide). Extracted simulation results indicate a

maximum frequencyof 865 MHz with a 1.8 V power supply.

5.3 Synchronizer Design

In FIFO designsutilizing unrelated clocks, asynchronous inputs must be properly synchro-

nized. Generally, these inputs are multi-bit vectors, however, as shown in Chapter 4, this problem

can be reducedto a singlebit synchronization problem. As discussedin Chapter 3, the fundamental

choice in synchronization strategy is either to use pausible clocks, or to allow enough resolution

time to reducethe probabilit y of synchronization failure to an acceptablelevel. The application will

likely govern this decision. For this FIFO design,using pausible clocks at the interface was deemed

to be unacceptable, due to complexity issues,the non-deterministic delays it would causein the

system,and the fact that each domain had several incoming and outgoing interfaces,making proper

arbitration di�cult. Once this was decided we chosea simple pipeline synchronizer (described in

Sec.3.2.1) for synchronizing the incoming addresspointers. In order to have reliabilit y control for

characterization purposes,the number of stagesin the synchronizer is con�gurable. Additionally ,

sincethe target systemcan run at various frequencies,a con�gurable length synchronizer decouples

the resolution time from the clock frequency. This way at high frequencies,several stagescan be

used to ensurereliabilit y, but at lower frequenciesthe number of stagescan be reduced, while the

mean failure rate and total latency remain the same. The architecture for the synchronizer circuit

is shown in Figure 5.9. The unsynchronized path (Con�g= 0) was included for metastabilit y testing

purposes.

Once the architecture is chosen the actual synchronizing circuit needs to be designed.

Traditionally , a memory element|usually a ip-op or latch|is used for this task. The target

application for this project also requires that the designbe synthesizable. Accordingly, the amount

CHAPTER 5. HARDWARE IMPLEMENT ATION 39

1

Clock

2 4
Async Input

Sync Output

Config 0 1 2 4

3

3

Local

3

Figure 5.9: Synchronizer element with con�gurable metastabilit y resolution time

phi_n

phi

phi_n

phi

latch1_in

phi

phi_n

half_latch_out

phi

phi_n

Q

latch2_in

D
Inv1 Inv2

Inv3

T1 T2

Tri1 Tri2

phiphi_n

Clock Inv4 Inv5

Figure 5.10: Schematic of negative edgetriggered synchronizer ip-op with local clock bu�ers

of non-standard library elements must be minimized. For this reason, and simplicit y, we used a

standard D ip-op for the synchronizer, similar to the ip-op usedin the remainder of the target

system. For the custom layout target we were able to make sizing adjustments and measurements

to the circuit in order to optimize and characterize its metastabilit y performance. The ip-op

synchronizer circuit can be seenin Figure 5.10 along with its devicesizesin Table 5.2.

When designinga synchronizer there are two deviceparametersthat needto be considered.

As described in Chapter 3 theseare the metastabilit y time constant(�) and the normalized aperture

in which metastabilit y canoccur (T0). There hasbeensubstantial research into the areaof improving

synchronizer performance,although there still appearsto be somedisagreement about the best way

to design an optimized synchronizing element. It is generally agreedupon that when designing a

synchronization ip-op it is important to keepthe time constant of the ip-op small. This results

in a faster resolution times, and, therefore, a higher propensity for avoiding resolution failures. In

order to have a small time constant, loading on the feedback loop of the bistable element needs

to be minimized. Additionally , some types of ip-ops, such as dynamic ip-ops, have in�nite

time constants due to the lack of feedback, making them poor synchronizers. The metastabilit y

CHAPTER 5. HARDWARE IMPLEMENT ATION 40

NMOS width (�) PMOS width (�)
Inv1 10 19
Inv2 5 5
Inv3 10 26
Inv4 5 10
Inv5 8 14
Tri1 5/5 5/5
Tri2 5/5 5/5
T1 5 8
T2 5 12

Table 5.2: Device Sizing for Flip-op Synchronizer of Figure 5.10. (� = 0.09 � m for a 0.18 � m
process).For tri-state devicesthere are two devicesin seriesfor both the pull-up and pull-down.

time constant � , intro duced in Section 3.1, can be minimized in the same manner. It has been

shown that the parameter � is related to the gain-bandwidth product of the �rst stage in the

ip-op [18] [24]. The relationship has been established with � equal to the inverse of the gain-

bandwidth product of the synchronizer [25]. This meansthat ideal synchronizers have high current

drive (i.e., large transconductance(gm) values) and small node capacitances. Synchronizers using

bistable inverters havebeenshown to yield better results than thoseconstructedout of morecomplex

gates [28]. Basedon the gain-bandwidth requirement, this makessense,since inverters present less

loading and have higher gain than other typesof logic gates. Given a synchronizer topology utilizing

bistable inverters, as shown in Figure 5.10, it has been suggestedthat the optimum device width

ratio is 1:1(PMOS:NMOS) for maximizing the gain-bandwidth product of the synchronizer [23] [50].

Unfortunately, when consideringthe MTBF equation for a pipelined synchronizer (Eq. 3.1 and 3.4),

both � and t � appear in the exponent. While the speci�ed ratio can improve gain-bandwidth,

it can increase the propagation time of the ip-op, especially in technologies with low PMOS

device mobilities. Accordingly, optimizing entirely for gain-bandwidth is not necessarilythe best

approach. Additionally , there has been debate about the accuracy of the relationship between

gain-bandwidth and � [51]. It has also been shown that in two-stageip-ops|master-sla ve|the

synchronization task is left up to the �rst stageof the ip-op and often any metastabilit y is isolated

to the internal nodesand only a delayed ip-op output responseis seen[18]. It is still possibleto

sample a metastable value at the output becausethe transition time is non-deterministic, making

it asynchronous to the next device. However, it is lesslikely than if the output of the �rst ip-op

stagewere usedbecausethat stage'soutput will sit at a logically unde�ned state while the ip-op

resolvesany conicts.

When hardware is not available, it is useful to usecircuit simulations to estimate metasta-

bilit y performance. Methods for using simulations to approximate metastabilit y characteristics have

CHAPTER 5. HARDWARE IMPLEMENT ATION 41

been published [22] [24] [25], but simulations can be hard to control [50]. Additionally , time steps

on the order of 0.1 ps or lessare required to make thesetypesof measurements [28]. However, these

techniqueshave beenutilized to achieve reasonableapproximations to the �nal hardware values[26].

Accordingly, it is still useful to simulate these values to get a general idea of failure rates prior to

committing a designto hardware.

The layout for the ip-op design in Figure 5.10 was extracted to include all parasitic

capacitancesgreater than 0.1 fF. Numerical circuit simulations in HSPICE were used to estimate

metastabilit y performance. Figure 5.11 shows the simulation results from a setup time violation of

this ip-op. This wasaccomplishedby iterativ ely running simulations and shifting the D (data in)

input transition until values were found that caused the ip-op to behave incorrectly. In this

case,the input changeoccurs about 40 ps after the clock input (phi in) transitions. The �rst stage

is forced into a metastable state with both internal nodes (latch1 in and half latch out) sitting in

the logically unde�ned region near VD D =2. As noted above, while the �rst stage of the ip-op is

resolving the input conict the output of the secondstage is being held, and is not forced into the

metastablestate. This simulation wasperformed at 100� C and a VD D of 1.62volts with a resolution

time of 0.01 ps. The simulation conditions were chosen becauseincreasing the temperature and

lowering the supply voltage increasesa devicessusceptibility to metastabilit y [50] [24].

Wechosethe simulation methodsdescribedby Jex and Dike [25] for estimating the metasta-

bilit y time constant � , and we chosePortmann and Meng's [24] method for estimating T0. Deter-

mining T0 by simulation is more di�cult and lessaccurate than � [51]. However, since� appearsin

the exponent of the MTBF equation (3.1), and T0 does not, variations or inaccuraciesin � have a

much greater e�ect on the estimate than variations in T0.

The method for determining � by simulation consistsof using a voltage controlled switch

to force the internal nodes (latch1 in and half latch out in Fig. 5.10) into the metastable state.

This is accomplishedby �rst shorting thesenodes together with a low resistance(0.001
) switch.

The clock input is statically tied low to enablegatesT2 and Tr i1 and disable T1 and Tr i2. Even

though someof the deviceswill always be disabled in this simulation, they were left in to accurately

model the internal loading conditions. The switch was left closedfor 10 ns and then openedwith a

control voltage pulse. The \o�" resistanceof the switch wasset to 100M
. At this point numerical

simulator noisewill likely causethe nodesto drift apart, but a small power supply, on the order of 1

� V, can be addedin serieswith the switch to force the nodesapart [25]. The time constant at which

the nodesdrift apart gives the desiredapproximation for � . By plotting the di�erence betweenthe

CHAPTER 5. HARDWARE IMPLEMENT ATION 42

V
o

lt
ag

es
 (

lin
)

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time (lin) (TIME)
18n 20n

phi_in

data_in

latch1_in

latch2_in

data_out

half_latch_out

* synchronizer d flip-flop

Figure 5.11: Metastable event of D ip-op in HSPICE circuit simulator

Test Condition T0 (ps) � (ps)
Data transition high to low 600 -
Data transition low to high 720 -

Forced to metastable point and released - 30.5

Table 5.3: Metastabilit y parameters from HSPICE numerical simulator (test conditions = 100� C
and VD D = 1.62V)

two nodeson a semilogplot the time constant can be found using Equation 5.1 [25].

� =
t1 � t2

loge(V2=V1)
(5.1)

An example waveform set from an HSPICE simulation of this test can be seenin Figure 5.12. The

estimated worst case� measurement for the synchronizer design shown in Figure 5.10 is listed in

Table 5.3.

In order to estimate T0, iterativ e simulations were run on the synchronizer ip-op. Two

setsof simulations were run, one for a data transition high to low and one for a data transition low

to high. The processconsistsof moving the data transition edgethrough the critical window of the

ip-op. The two piecesof information to be collectedfrom the simulation are, 1) the time di�erence

between the active clock edgeand the data transition (D) and, 2) the time di�erence between the

active edgeof the clock and the output (Q) transition. After a �rst passthrough the critical window

CHAPTER 5. HARDWARE IMPLEMENT ATION 43

V
o

lt
ag

es
 (

lin
)

0

200m

400m

600m

800m

1

1.2

1.4

1.6

Time (lin) (TIME)
10n

half_latch_out

latch1_in

* calculation of dff tau (for mtbf estimates)

R
es

u
lt

 (
lo

g
)

100u

1m

10m

100m

1

10

Time (lin) (TIME)
9.95n 10n 10.05n 10.1n 10.15n

Current Y=6.4742e-01
Current X=1.0080e-08Current Y=1.8595e-01

Current X=1.0040e-08

Difference

* calculation of dff tau (for mtbf estimates)

Figure 5.12: Measuring the � parameter for synchronizer (T= 100� C and VD D = 1.6 V)

with a large increment size(� 100 ps), smaller windows are usedwith a smaller increment size. The

focal point of the exerciseis the window where deep metastabilit y occurs. This is de�ned as the

region wherethe clock to data output becomesnon-deterministic, and is not simply a delayed version

of the correct output [25] (i.e., larger than normal clock{to{Q times). In HSPICE this region is the

area where the ip-op output resolution direction is governed by numerical noisein the simulator,

and no longer by the input data value. An exampleof this simulation state is shown in Figure 5.11.

The data transition delay wasset to 17.04444ns.If the simulation is re-run with a � 0.1pschangein

the delay (i.e., shifting the data transition by that amount) the resulting simulation output changes.

This indicates that this transition is occurring within the deepmetastabilit y region. The beginning

of this region is indicated by an extremely steep increasein the clock{to{Q time of the ip-op

and also an inconsistency in the output results when small shifts are made in the data transition

location. A plot of the data collected from one of these simulation sets is shown in Figure 5.13.

Failed transitions|ones that did not causean output transition|are not shown for readability.

The collected data matchesnicely to the generalizedapproximation for a ip-op's output response

shown in Figure 3.1. In this plot, deepmetastabilit y beginsat approximately{50 ps on the x-axis.

As mentioned in Section 3.1, the T0 parameter is the asymptotic width of the time aperture that

CHAPTER 5. HARDWARE IMPLEMENT ATION 44

�500 �450 �400 �350 �300 �250 �200 �150 �100 �50 0
0

100

200

300

400

500

600
Clock to output v.s. clock to data displacement (low to high transition)

Clk to Data displacement (ps)

F
lip

�fl
op

 C
lo

ck
 to

 O
ut

pu
t t

im
e

(p
s)

Figure 5.13: Plot of HSPICE data used for determining T0 parameter (dashed line is �tted expo-
nential approximation, \ 2 "= zero crossingand \ r "= tmeta)

the device enters metastabilit y. Targeting just the deep, or true, metastabilit y region provides

more accurate failure results than if the region is included where the ip-op output response is

just delayed [26]. The shifted and �tted exponential function shown in Figure 5.13 estimates this

exponential aperture width. The \ r " symbol near{40 ps represents the tmeta point as shown in

Figure 3.1. The \ 2 " represents the zero crossingof the exponential. The magnitude of the time

di�erence on the x-axis betweenthe exponential zero crossingand tmeta is equal to T0=2 [24]. The

estimated worst caseT0 measurements for the synchronizer design shown in Figure 5.10 are listed

in Table 5.3.

Based on prior work in the area of synchronizers, the results shown in Table 5.3 seem

reasonable. A jamb latch architecture has been shown to have very good � values [26]. In a

0.25 � m CMOS process,simulations estimated � and T0 for a jamb latch to be 20 ps and 15 ps

respectively [26]. This was then validated on silicon. Simulated estimates of � and T0 for several

ip-op architectures in a 0.6 � m CMOS processwere determined to be in the range of 56 ps{110

ps and 7 ns{73 ns respectively [27]. The dramatically larger valuesof T0 comparedwith the other

estimate and this work, are attributed to the larger processdimensionsand the fact that they did

not target deepmetastabilit y.

Table 5.4 shows the estimated mean time betweenfailures of our synchronizer architecture

CHAPTER 5. HARDWARE IMPLEMENT ATION 45

MTBF Number of Synchronizing Flip-ops (N)

Clock Frequency 2 3 4 5

1000MHz 25.81sec 39 � 103 years 1.86 � 1015 years 8.91 � 1025 years

750 MHz 33.5 days 2.44 � 1014 years 6.41 � 1029 years 1.69 � 1045 years

500 MHz 5.64 � 108 years 4.69 � 1033 years 3.86 � 1058 years 3.20 � 1083 years

Table 5.4: Estimated mean time between failures using synchronizer from Fig. 5.9 and worst case
simulated deviceparameters(T0 = 720 ps , � = 30.5 ps, t � = 300 ps and tmux = 50 ps)

(Fig. 5.9) utilizing the synchronizing ip-ops shown in Figure 5.10. To make the estimates, the

worst caseparameter measurements were used in conjunction with Equations 3.1 and 3.5. In this

case,there will also be a tmux = 50 ps value subtracted from the resolution time, to account for the

selectionmux clock to data delay. This mux delay can be made fairly small, sincethe con�guration

valuesgenerallydo not changeduring run-time. Given that the results for a two ip-op synchronizer

in the frequency range of the target application show MTBFs of greater than 1 billion years, the

failure rates are deemedto be acceptably low.

5.4 Gra y/Binary Converters

5.4.1 Background

A Gray code is a digital codewhereonly onebit changesbetweensuccessivecodewords [13].

Constructing a Gray code sequenceof an arbitrary bit length can be done recursively. Two possible

methods for generating a Gray code sequenceare outlined by Wakerly [13]. As discussedin Sec-

tions 3.3 and 4.2.1 , this is the type of encoding required when synchronizing a multi-bit vector with

ip-ops. However, as shown in Chapter 2 and mentioned in Section 4.2.1, it is more convenient to

perform mathematical manipulations with a binary encoded vector. In the FIFO designthis results

in a scheme where vectors are mapped into a Gray code when being transferred acrossthe clock

boundary and are then mapped back into binary for calculations once they are synchronized into

the clock domain.

Converting binary values to Gray code is straightforward. Given an n-bit binary vector

(bn � 1; bn � 2; ::: ; b1; b0), the Equations in 5.2 can be used to convert to an n-bit Gray coded vector

CHAPTER 5. HARDWARE IMPLEMENT ATION 46

bn-1 bn-2 bn-3 b1 b0

(MSB)

gn-1 gn-2 gn-3 g0...

...

Figure 5.14: Binary to Gray code conversion circuit

gn-1 gn-2 gn-3 b1 g0

(MSB)

bn-1 bn-2 bn-3 b0...

...

Figure 5.15: GeneralizedN -bit Gray to binary converter architecture

(gn � 1; gn � 2; ::: ; g1; g0), where \ + " indicates the sum ignoring the carry.

(MSB) gn � 1 = bn � 1

gn � 2 = bn � 1 + bn � 2

gn � 3 = bn � 2 + bn � 3 (5.2)

: : :

g0 = b1 + b0

This can be accomplishedusing the XOR function and a generalcircuit architecture for performing

this conversion is shown in Figure 5.14. Sinceeach bit can be calculated in parallel, the worst case

gate delay for this circuit for any n-bit vector is oneXOR gate. The calculation requiresn � 1 XOR

gates.

The reverseconversion from Gray to binary is similar to the above case. Given an n-bit

Gray coded vector (gn � 1; gn � 2; ::: ; g1; g0), the Equations in 5.3 can be usedto convert to an n-bit

CHAPTER 5. HARDWARE IMPLEMENT ATION 47

binary vector (bn � 1; bn � 2; ::: ; b1; b0), where \ + " indicates the sum ignoring the carry.

(MSB) bn � 1 = gn � 1

bn � 2 = bn � 1 + gn � 2

bn � 3 = bn � 2 + gn � 3 (5.3)

: : :

b0 = b1 + g0

Unlike the previouscase,in this calculation all the bits|aside from the MSB|require the next most

signi�cant binary bit output asan input. This results in a worst casegate delay of n � 1 XOR gates

for an n-bit vector and also requires a total of n � 1 XOR gates. A generalcircuit architecture for

this conversion can be seenin Figure 5.15.

5.4.2 Circuit design

The 32-entry FIFO neededfor the target application requires a 6-bit address�eld to be

converted to Gray code for transmissionbetweenclock domains. For a 6-bit input vector, the binary

to Gray converter shown in Figure 5.14, will have a worst casedelay of one XOR gate. A fast XOR

gate can be constructed from 6 transistors. The delay of this gate was measuredto be roughly

150 ps. However, this circuit has a path that consists of only two pass transistors. To increase

the robustnessand the output drive capabilities of the gate, a similar topology with an inverter

output bu�er can be used. However, this increasesthe propagation delay by approximately 50 ps,

in the worst case. An example of this circuit can be seenin the sum logic of Figure 5.19. Circuit

simulations on the extracted converter circuit indicate that the worst casepropagation delay for the

module was 200 ps with a default load capacitance.

If the architecture in Figure 5.15 were used for the Gray to binary conversion, the worst

casedelay would be 5 XOR gatesin series,yielding a propagation delay of approximately 1 ns based

on the above results. This logic block is in serieswith several other piecesof slow logic, which ends

up creating the worst casedelay path in the �rst stageof the FIFO. Therefore, reducing the delay

here is bene�cial to increasingthe overall speedof the module.

The long propagation time is due to the ripple e�ect in the circuit| i.e., lesssigni�cant bits

require information from higher bit calculations before they can calculate their results. A similar

problem is found in ripple-carry adders [1]. A carry-select architecture is a straightforward way to

reduce the worst casepropagation delay of such adders [1]. A similar technique can be used for

CHAPTER 5. HARDWARE IMPLEMENT ATION 48

g5 g4 g3

b5 b4 b3

10

g2

10

g1 g1

10

g0 g0

b2 b1 b0

Figure 5.16: Six-bit Gray to binary conversion circuit

the Gray to binary converter circuit. A 6-bit implementation utilizing this technique can be seenin

Figure 5.16. The main idea is to break apart the ripple path. Since this circuit has a ripple path

of 5 gates,breaking it more than oncewould result in signi�cantly larger area with little speed-up,

accordingly it is broken only once. The circuit hardware is then duplicated and one set of gates is

used to calculate the result if the ripple bit incoming to the breakpoint was a \1" and the other

calculates the result if the incoming ripple bit was a \0". The two valuesare then multiplexed and

the true ripple value is usedto pick the correct result. For this architecture, the critical delay path is

reducedfrom 5 XOR gates,to either 2 XOR gatesplus a mux control input to output, or an inverter

plus 2 XOR gatesplus a mux data input to output. The extracted layout circuit simulations showed

a worst casedelay of 520 ps. This achievesa 48% reduction in delay from the normal architecture.

The cost in circuit area is about an 81% increasefrom 185 � m2 to 336 � m2. However, the actual

physical areaincreaseis small comparedto the total designsizeand is a worthwhile cost for reducing

the delay by nearly one half.

5.5 Binary Incremen ters

In order to keep track of the addresspointer locations, an unsignedbinary incrementer is

required. The primary component to this module is a plus one adder. The addresspointers are six

bits, so a standard unsigned binary adder could be used to compute this sum. However, because

the module needsto do only two operations|hold and increment by one|the module can be made

smaller and faster by designing custom logic for the plus one operation. This module also has a

ripple-carry path, soa carry-selectarchitecture wasusedto reducethe propagation delay. A diagram

of the plus one adder module is shown in Figure 5.17. In this case,implementing the carry-select

architecture had little impact on the active area, which resulted in only a 17% increasefrom 290

CHAPTER 5. HARDWARE IMPLEMENT ATION 49

Cout

Sum

A

B

Half Adder Cell
(HA)HA

Cout

Sum

A

B

In1 In0

HA

Cout

Sum

A

B

In2

out2 out1 out0

HA

Cout

Sum

A

B

01 01

In3In4In5

01

out3out4out5

Figure 5.17: Six bit binary incrementer circuit

� m2 to 340 � m2. The AND gatesusedfor the half-adder carry have delays of 125 ps, and the XOR

gates had a 200 ps delay. Without the carry-select architecture, the total delay would have been

4-AND gatesplus one XOR gate, yielding a total delay of 700 ps. Again this logic is in serieswith

other logic in the pipeline stage, making this a critical delay. The carry-select reduced the worst

casedelay to 370 ps, which is an 89.5%speed-up.

The remainder of the incrementer module consistsof two six-bit multiplexers and a six-

bit register. The two control inputs are increment and reset. The complete module is shown in

Figures 5.22 and 5.23. The rd request signal coming into the FIFO arrivesnear the end of the clock

cycle becauseof the amount of upstream logic required to generate it. Since the plus one adder

takessometime and its result is neededby other units, the add is always computed as soon as the

incrementer register changes.This way the result is ready by the time the rd request signal arrives,

and other units are not waiting for this signal to begin their computations.

5.6 Reserv e Logic

The calculation of the \In Reserve" (i.e., the FIFO cannot accept anymore data) signal

is the most complicated arithmetic logic required in the design. The necessaryoperation is given

in Equation 2.3. As noted previously, the form of the secondequation is easier to implement in

hardware and that is the form chosen here. For this implementation each of the input address

vectors are 6-bits wide. The reserve constant needsto be only 5-bits since its value should always

be less than the number of FIFO memory locations, which is 32 in this case. However, here it is

just shown to be a standard input. A dot diagram detailing the operation is shown in Figure 5.18.

Each dot represents a bit in the calculation. The �rst step taken is to usea full adder|also called

CHAPTER 5. HARDWARE IMPLEMENT ATION 50

3:2

1+
r5 r0r1r2r3r4r6

Figure 5.18: Dot diagram representing \In Reserve" adder function

a 3:2 compressorin this context|to compressthe three input vectors into two vectors in carry-

save format. The 3:2 function is shown to the right of the dot diagram. An interesting part of

this adder design is that only bit used is the MSB (r 5 in this case). If this bit is high then the

spaceleft in the FIFO is lessthan or equal to the amount of reserve space. The valueswith \X"'s

through them are \don't care" valuesand are not necessaryfor determining the desiredoutput r 5.

To perform the subtraction of the read pointer it can be converted to a negative number and then

added. Accordingly, it needsto be inverted and a one needsto be added in the LSB. The inversion

occurs before the vector enters the �rst row of 3:2s. Once the vectors are compressed,a �nal add

needsto take placeto transform the valuesout of carry-save format. This requiresa standard binary

adder. To achieve a lower propagation delay, we choseto usea carry-select implementation for this

adder. Becausethis logic is in serieswith the Gray to binary conversion it was important to make

it fast.

The full adder (3:2) implementation used for this module is shown in Figure 5.19. The

3-input XOR function used to compute the Sum output is built with a two-level structure. It

is bene�cial to choose the inputs to this structure carefully such that the latest arriving signal is

connectedto the Cin input. The earliest arriving input should be connectedto the slower of the

other two, which is B in this case. This way the �rst XOR has all ready computed its result and

only one XOR delay is left when the late input arrives. The inputs are also internally connectedto

the carry logic with the sameordering preferenceto minimize the body-e�ect on the transistors in

that logic. This carry-logic is built using a mirror adder [1] topology. This calculatesthe carry with

a single stage, instead of the two stagesrequired for a standard sum-of-products implementation.

The caveat is that the signal produced is the inverted Cout value, however, this can be dealt with at

the architecture level of the adder, without requiring the useof inverters in the carry-ripple path [1].

The �nal architecture for the reserve logic is shown in Figure 5.20. As noted, the ripple-

CHAPTER 5. HARDWARE IMPLEMENT ATION 51

Cin

A B

A

B

A

BA B

Gnd

Vdd

Cout
A

B B

B

B

Cin

b

b

XOR

XNOR

b

b

Sum

Figure 5.19: Hardware implementation of a full adder circuit

adder is broken apart, and the secondripple-carry Cout value (Co2 in Fig. 5.20) is used to select

the correct output. To account for the inversion of the carry bit, every other carry-logic block

has all of its inputs inverted. As shown in Figure 5.19, the carry logic used in the full adder

implementation producesthe inverted Cout as noted by the bubbles on theseoutputs from the �rst

rows of 3:2s. Instead of adding an inverter and then subsequently adding an additional inverter

to each carry output, every other set of inputs to the secondrow of carry logic is inverted. This

producesalternating Cout and Cout values. The Cout values are indicated by inversion bubbles on

the Cout ports of the logic blocks. The standard carry out logic is shown in Equation 5.4.

Cout = A � B + A � Cin + B � Cin (5.4)

Equation 5.6showsthe logic function that is implemented with the mirror addercarry logic. Through

logical manipulation it can be shown that equations5.5 and equations5.6 are equivalent.

Cout = (A � B + A � Cin + B � Cin) (5.5)

Cout = A � B + A � Cin + B � Cin (5.6)

The result of this is that by complementing all of the inputs to the mirror carry cell, the uncom-

plemented version of Cout can be generated. This principle can be used to prevent having to add

additional inverters in the ripple path. Instead inverters are added in parallel to someof the signals

coming out of the �rst row of adders. This addsonly oneextra inverter delay to the worst casepath

instead of one per carry-ripple stage.

As mentioned above the input arrivals times should be matched to the appropriate input.

In this case, the choices were easy to make becausethe input arrivals have a clear ordering. As

shown in Figure 5.22, the three inputs to the adder are the write pointer, read pointer and reserve

CHAPTER 5. HARDWARE IMPLEMENT ATION 52

wr[0] res[0] rd[0]wr[1] res[1] rd[1]wr[2] res[2] rd[2]wr[3] res[3] rd[3]wr[4] res[4] rd[4]wr[5] res[5] rd[5]

Carry Logic

A B

CinCout

Full
Adder

A B

SumCout

Cin

Full
Adder

A B

SumCout

Cin

Full
Adder

A B

SumCout

Cin

Full
Adder

A B

SumCout

Cin

Full
Adder

A B

SumCout

Cin

Carry Logic

A B

CinCout

Sum Logic

A B

Sum

Cin

Sum Logic

A B

Sum

Cin

Sum Logic

A B

Sum

Cin

Carry Logic

A B Cin

Cout

Carry Logic

A B Cin

Cout

1

wr_hold

Co2

Figure 5.20: Three input, six bit adder for determing the \In Reserve" condition

value. The reserve value is static at run-time so it will clearly be the �rst available input. The write

pointer comesdirectly out of a register, so it will be available after approximately 250 ps. The read

pointer is the slow input and will averageabout 350 ps with 535 ps in the typical worst case.

The �nal circuit layout has an active area of 908 � m2. The total worst casepropagation

delay for the circuit is 515ps. The �rst row of adderstakesapproximately 200ps for both the carry

and sum logic, although this may be slightly improved basedon the input arrival ordering mentioned

above. The remainder of the worst casedelay path is from the inputs to the NAND and NOR gates

through the carry logic, through the sum logic and then through the output selectionmultiplexor.

5.7 Comparators

In order to determine the FIFO empty condition, the two addresspointers need to be

compared. If all six bits are equal then the FIFO is in the empty state. The implementation of the

comparator logic is straightforward and logically consistsof a bitwiseXNOR of the two input vectors

followed by an AND-word operation. In this case,a six input AND gate is needed,requiring a worst

CHAPTER 5. HARDWARE IMPLEMENT ATION 53

Equal

A0
B0

A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

Figure 5.21: Six bit comparator for determing the \empt y" condition

casepath of six NMOS in seriesfollowed by a PMOS pull-up in the inverter. To better optimize

the circuit, the AND function was split into two stagesand then transformed into a NAND/NOR

network. The resulting equation is logically implemented as shown in Figure 5.21. Minim um-sized

inverters are placed on all inputs to reduce the input load capacitanceand facilitate the use of a

transmission gate XNOR without an output inverter. An exampleof this implementation is shown

in the XNOR box of the secondstageof the sum logic in Figure 5.19. Inverting all the inputs to the

2-input XNOR doesnot logically modify the gate becauseit is a symmetric function.

The �nal layout requires300� m2 and the worst casedelay of the extracted circuit is 315ps.

5.8 Top-lev el FIF O Mo dule

The �nal FIFO module requires the compilation of the modules described in Sections5.2{

5.7. Figure 4.1 shows a high-level diagram of the dual-clock FIFO design. As discussed,the �nal

hardware module will be integrated into the AsAP processor.The FIFOs are placed in closeprox-

imit y to the processorthat is connectedto the read side of the FIFO. The inputs and outputs for

the write side of the FIFO are connectedto the producer processorthrough longer busses. These

busesare multiplexed just beforethey reach FIFO. The connectionsare controlled with con�guration

inputs so that they can be modi�ed asrequired by the current application. The synchronizer con�g-

uration and reservevaluesare supplied to the FIFO externally by the local processor'scon�guration

memory.

CHAPTER 5. HARDWARE IMPLEMENT ATION 54

Stage 1

6

6

6

[4:0]

FIFO
SRAM

wr_addr_ptr

6

Stage 2

to read side

wr_request

wr_valid

from
read side

wr_en

Reserve

data_in
16

reset

Incr
Incrementer

Gray to
Binary

Adder
+

+-

6
1

0

+1

Sync

Equivalence

async_empty

wr_data

wr_addr

Binary
to Gray

(MSB)

wr_hold

clr

clr clr

clr

clr clr

clr

Figure 5.22: Pipeline diagram for the write side of the FIF O

The target application processoris pipelined for increasedclock frequencies. The write

side of the FIFO �ts fairly easily into a pipelined design, since the reserve spaceis con�gurable

and is accounted for in the adder module. A pipeline diagram for the write side of the FIF O is

shown in 5.22. Wire latency and logic delays in the interface path are intro duced in Section 2.2.2

and details for this design are discussedin Section 4.2.2. One design requirement from the AsAP

architecture is that the write side of the FIFO must be asynchronously resettable. This is because

the FIFO is located within the processorthat is tied to the read side of the FIF O. The write side

of the FIFO may or may not be in use. If the unit is not being used, it will not be supplied with

a write clock. However, random initial values within the FIFO write side registers were shown to

causeproblems during application simulations. Accordingly, they needto be reset even if the FIF O

write clock doesnot oscillate. All registerswith asynchronous resetsare marked with a \clr" .

The read side of the FIFO is also pipelined into two stages.Sincethis side is synchronous

with respect to the local processor,all the resetson this sideof the FIFO are synchronous. Registers

with a reset capability are marked with a \r es". An additional concernis that the rd request signal

arrivestowards the end of the clock period, so the logic is designedto be able to do most of its work

prior to learning the true value of this signal.

As mentioned, both sides of the FIFO have an output that is used in the other clock

domain even though it is asynchronous with respect to the other clock. This signal is used as an

asynchronous wake-up for sleepingprocessors.For example, if the write side processorgoesto sleep

CHAPTER 5. HARDWARE IMPLEMENT ATION 55

Adder -
+

+

Equivalence

‘111111’

reset

Gray to
Binary

Stage 1

6 6

6

(rd_ptr + 1)

Incr

6

[4:0]

FIFO
SRAM

addr

Stage 2

to write side

FIFO rd data

empty

+1

rd_request

from
write side

PIPELINED FIFO RD SIDE

1

0

1

0

Incrementer

6Reserve

Sync

(MSB)

async_full

en

Binary
to Gray

6
res res

res res

res

Figure 5.23: Pipeline diagram for the read side of the FIFO

waiting for the downstream FIFO to acquire free space,its clock will halt. This results in all the

register values on the write side of the FIFO becoming frozen. Accordingly, the state of the write

sideof the FIFO is locked and it will never be able to indicate to the processorthat the FIFO hasfree

space(normally indicated with the wr requestsignal). Accordingly, a replica of the logic to generate

this signal is placed on the read side of the FIFO. In this way, when the read side beginsemptying

the FIFO it can indicate to the sleeping processorthat there is free spaceso it can restart and

complete its write to the downstream FIFO. The analogouscaseapplies to the read side processor

sleeping,waiting for data it needsto complete its current instruction to enter the FIF O. Sincethese

signalsare not being usedsynchronously within the clock domain that is generating them, there is

no timing requirement for them.

As discussed,the FIFO employs a two line signalling convention. On the read side, the

FIFO is always indicating whether or not it is empty. This is the active port. The interface logic

responds to this signal. If the FIFO is not empty, it will supply a request signal indicating that it

wants data. This data will be supplied one cycle later from the FIFO SRAM. On the write side,

the FIFO suppliesa requestsignal. If the FIFO is not requestingdata, the producer should not try

to write to the FIFO. Instead, it should wait until there is spacein the FIF O (i.e., wr request is

asserted),and then signal that there is valid data using its control line (wr valid).

CHAPTER 5. HARDWARE IMPLEMENT ATION 56

Units utilized per FIFO Activ e area (� m2)
SRAM 1 30,507
Synchronizer 2 3,867
Reserve logic 2 908
Comparator 2 300
Gray to binary conv. 2 336
Binary to Gray conv. 2 186
Incrementer 2 1530
Total 44,761

Table 5.5: Area breakdown for the FIFO hardware module

5.8.1 Performance and analysis

The �nal layout of the dual-clock FIFO module is shown in Figure 5.24 and has approxi-

mately 44,761� m2 of active area. The minimum rectangle it occupiesis 66,500� m2 in area. The

module shown is only the �rst pass layout. With further layout optimizations it would likely be

possible to pack the modules more tightly and �t the design into a smaller rectangle. Table 5.5

shows the active areasfor the individual components of the FIFO. The SRAM occupiesthe most

area followed by the synchronizers. These modules occupy 67.7%and 17.5%of the active area re-

spectively. In someapplications the asynchronous wake-up signals would not be required. In this

case,one reserve logic unit and one comparator unit could be removed, reducing the active are by

about 1,200� m2.

The FIFO SRAM simulates correctly at 865 MHz with a 1.8 V supply. Unfortunately, the

the �rst stage of the FIFO pipeline is the bottleneck in terms of speed, so the entire FIFO cannot

operate at this speed.

Based on the HSPICE timing simulations, the critical path is equal on both sidesof the

FIFO. On the write side, this path consistsof the Gray to binary converter module in serieswith

the adder that producesthe wr hold signal. In order to increasethe performance,the inverter that

creates the wr request signal was moved into the next pipeline stage. The total worst casedelay

in this path under typical conditions is 535 ps for the converter plus 515 ps for the adder plus a

ip-time of 250 ps. The total delay is then 1.3 ns.

The read side's worst case path is through the Gray to binary converter, followed by

the equivalencedetector, then through an inverter/AND gate combination and �nal through two

multiplexors. The respective delays are 535 ps, 315 ps, 150 ps and 50 ps. Combined with a ip-op

time of 250ps, this results in a total delay of 1.3 ns. This assumesthat the rd request arrivesbefore

approximately 800 ps, which is reasonablebasedon the logic that is creating that signal. If that

CHAPTER 5. HARDWARE IMPLEMENT ATION 57

Figure 5.24: Final layout for the dual-clock FIFO module (incr= incrementer, comp= comparator,
res= reserve, incr= incrementer, predec= predecoder, WL= wordline)

signal weredelayed any longer than that, the read sidewould further limit the maximum frequency.

The resulting maximum clock frequency for the �rst stage, and subsequently the entire

FIFO, is approximately 770 MHz.

As discussedin Chapter 2, some of the key performance metrics in a FIFO design are

robustness,throughput, energy-e�ciency, scalability, latency and clock rate.

For this design, robustnessis the top designgoal, so trade-o�s (mainly speed) were made

in order to ensurethat the FIFO would operate robustly when fabricated.

Secondly, since the target application is an array of DSP processors,it is highly desirable

to achieve a throughput of one datum per cycle. The �nal design can support a throughput of

one datum per cycle up to its maximum clock frequency. This occurs when the consumption and

production rates are similar, such that there are constant writes to and reads from the FIFO. This

CHAPTER 5. HARDWARE IMPLEMENT ATION 58

throughput is not limited by the clock frequency, so if techniques were used to increasethe peak

clock frequency the throughput would remain at one datum per cycle.

The overall energy-e�ciency will bemoreclearwhenhardware is available to makeaccurate

power measurements. There are two main areas that will help to ensure the energy-e�ciency of

this design. The �rst is the utilization of enableswithin the memory core, which prevents high

capacitancenodes inside the memory from switching unnecessarily. Secondly, through the support

of dynamic frequencyscaling, the FIFO can operate in a fashion where it can be sped up or slowed

down at run time to more precisely match its requirements at a given time period, so it only uses

enoughenergy to meet its current goal.

This designalso achievesa high degreeof scalability. Two primary components factor into

the scalability of the design. The �rst is the FIFO logic itself and the secondis the memory core.

In the design demonstrated here, the FIFO logic is the bottleneck in terms of speed, however, as

the overall FIFO size grows the memory will becomethe important factor. This is becausethe

FIFO logic requires only minor changes,the highest impact being an addresswidth increaseof one

bit every time the FIFO depth doubles. No control changesare required for the FIF O when the

data width changes. As the memory size increasesthe latency will also increase. If the memory is

adequatelypipelined, the module will still be able to maintain a throughput of onedatum per cycle.

Accordingly, the two main issuesthat impedein�nite scalability of the designare the throughput and

latency requirements of the application. Being able to maintain the FIFO throughput is contingent

upon being able to pipeline the memory enough to maintain the desired throughput through the

memory core. The latency will likely becomedominated by the memory as it continuesto grow, so

from this standpoint it is simply an issueof how much the latency of the memory can be reduced

by and how much latency the application can tolerate.

The minimum latency of the design is the time it takes one item to propagate from the

input of the FIFO to the output of the FIFO assumingthat it doesnot have to wait for other items

to be removed ahead of it. A casewhere this may happen is the situation where the consumer is

constantly requesting data and the producer is supplying it infrequently . Determining a minimum

latency for this FIFO is somewhat di�cult due to the fact that the read and write side clocks are

totally unrelated and dynamic, and total latency depends on both. To get a general idea of the

size of this delay it can be measuredfor the casewhere the two clocks are operating at the same

frequency, which is equal to the maximum frequencyof the FIFO. This delay is alsocontingent upon

the number of synchronizer stagesutilized in the design. For this measurement two stagesare used.

CHAPTER 5. HARDWARE IMPLEMENT ATION 59

The latency can then be bounded to three write clock cyclesplus three read clock cycles. The total

worst caselatency for this design is then six clock cycles,which yields a total latency of 7.8 ns at

the minimum clock period of 1.3 ns. Depending on the relative phaseof the two clocks, one of the

clock cycle delays included above may be reduced to just one ip-op clock-to-Q delay (250 ps).

This is the casewhere the asynchronous signal is sampledimmediately after it changesby the read

side synchronizer. In this casethe delay will be minimized and will be equal to 6.75 ns.

The �nal concernis more generaland is the support of high clock rates. The demonstrated

designcan support clock rates of 770 MHz in a 0.18 � m process,which is fast enoughfor the target

application. Higher clock rates can be achived by further devicesizeoptimization, utilizing a faster

style of circuits, or changing the fabrication technology.

60

Chapter 6

Conclusion

6.1 Summary

The primary areas covered in this thesis are single-clock FIF Os, synchronization and

metastabilit y, dual-clock FIFO architectures, and a hardware implementation of a dual-clock FIFO.

This thesis provides a comprehensive exploration of dual-clock FIFO design. The module

can be used for interfacing units with unrelated clocks in high-speed applications. The proposed

architecture is well suited for all dual-clock applications and achieves high energy e�ciency , good

scalability and area utilization, and arbitrarily high robustness.This architecture can be utilized as

a drop-in module to many applications. Additionally , it may alsobe customizedusing the trade-o�s

explored throughout this thesis.

The demonstrated hardware implementation occupies an active area of approximately

45,000 � m2 in 0.18 � m CMOS technology and simulations indicate an operation range of up to

770 MHz under typical conditions.

6.2 Future Work

The VLSI implementation of the �nal hardware design is currently being integrated into

AsAP project layout, which is projected to be fabricated in the near future.

Several areaswill be of particular interest when the hardware returns. One of the primary

questionsis the actual robustnessto metastabilit y. As mentioned, in the AsAP chip design,there will

be a parameter allowing the trade-o� between latency and metastabilit y to be exercised. It will be

interesting to seehow well the estimated MTBF valuesmatch the measuredvaluesin the hardware.

CHAPTER 6. CONCLUSION 61

Additionally , investigations into utilizing alternativ e methods to synchronization within the FIFO

would be worthwhile. The method employed in this caseis consideredthe brute force method, and

the synchronization circuits endedup occupying a substantial portion of the �nal layout. Another

area that may be worth exploring is building the memory core out of alternativ e structures. Since

the memory is the largest block in the FIFO, investigations into power and area reductions|while

maintaining reliabilit y|could have substantial impact on the overall module design. Furthermore,

with additional circuit level and sizing optimizations it may be possibleto improve the overall delay

of the �rst stage of the FIFO. This would result in an increasedoperation range for the FIFO

hardware design.

62

Bibliograph y

[1] J. M. Rabaey, A. Chandrakasan,and B. Nikolic, Digital Integrated Circuits, A Design Perspec-
tive, Prentice Hall, Upper SaddleRiver, NJ, 2003.

[2] R. Ho, K.W. Mai, and M.A. Horowitz, \The future of wires," in Proceedings of the IEEE , Apr.
2001,vol. 89, pp. 490{504.

[3] G. Semeraro,G. Magklis, and et al., \Energy-e�cien t processordesign using multiple clock
domains with dynamic voltage and frequency scaling," in International Symposium on High-
Performance Computer Architecture, Feb. 2002,pp. 29{40.

[4] D. M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems, Ph.D. thesis, Stanford
University, Stanford, CA, USA, 1984.

[5] Bevan M. Baas, \A parallel programmable energy-e�cien t architecture for computationally-
intensive DSP systems," in Signals, Systemsand Computers, 2003. Conference Record of the
Thirty-Seventh Asilomar Conference on, Nov. 2003.

[6] M. Balch, CompleteDigital Design, McGraw-Hill, New York, NY, �rst edition, 2003.

[7] I. Sutherland, \Micropip elines," in Communications of the ACM, 1989,vol. 32.

[8] E. Brunvand, \Lo w latency self-timed o w-through �fos," in Advanced Research in VLSI , Mar.
1995,pp. 76{90.

[9] I. Sutherland and S. Fairbanks, \GasP: A minimal FIFO control," in Advanced Research in
Asynchronous Circuits and Systems, Mar. 2001,pp. 46{53.

[10] J. T. Yantchev, C. G. Huang, M. B. Josephs,and I. M. Nedelchev, \Lo w-latency asynchronous
FIFO bu�ers," in Proc. Asynchronous Design Methodologies, May 1995.

[11] Chris J. Myers, Asynchronous Circuit Design, John Wiley & Sons,Inc., 2001.

[12] W. J. Dally and J. W. Poulton, Digital SystemsEngineering, Cambridge University Press,
Cambridge, UK, 1998.

[13] J. F. Wakerly, Digital Design: Principles and Practices, Prentice-Hall, third edition, 1999.

[14] M. Hurtado and D. L. Elliot, \Am biguousbehavior of bistable elements," in Allerton Conf. on
Circuit and SystemTheory, Oct. 1975,pp. 605{611.

[15] M. Pechoucek, \Anamolous responsetimes of input synchronizers," in IEEE Journal of Solid-
State Circuits, Feb. 1976,vol. 25, pp. 133{139.

[16] I. Soderquist, \Globally updated mesochronous designstyle," in IEEE Journal of Solid-State
Circuits, July 2003,pp. 1242{1249.

[17] R. Ginosar and R. Kol, \Adaptiv e synchronization," in IEEE International Conference on
Computer Design, Oct. 1998,pp. 188 {189.

BIBLIOGRAPHY 63

[18] J. U. Horstmann, H. W. Eichel, and R. L. Coates, \Metastabilit y behavior of CMOS ASIC
ip-ops in theory and test," in IEEE Journal of Solid-State Circuits, Feb. 1989, vol. 24, pp.
146{157.

[19] M. Bolton, \A guided tour of 35 yearsof metastabilit y research," in Western Electronic Show
and Convention (WESCON), Program Session16, 1987.

[20] T. J. Chaney and C. E. Molnar, \Anomalous behavior of synchronizer and arbiter circuits," in
IEEE Transactions on Computers, Apr. 1973,pp. 421{422.

[21] L. R. Marino, \General theory of metastabilit y," in IEEE Transactions on Computers, 1981,
pp. 107{115.

[22] J. H. Hohl, W. R. Larsen, and L.C. Schooley, \Prediction of error probabilities for integrated
digital synchronizers," in IEEE Journal of Solid-StateCircuits, Apr. 1984,vol. 19, pp. 236{244.

[23] S. T. Flannagan, \Synchronization reliabilit y in CMOS technology," in IEEE Journal of Solid-
State Circuits, Aug. 1985,pp. 880{882.

[24] C.L. Portmann and H.Y. Meng, \Metastabilit y in CMOS library elements in reduced supply
and technology scaledapplications," in IEEE Journal of Solid-StateCircuits, Jan. 1995,vol. 30,
pp. 39{46.

[25] J. Jex and C. Dike, \A fast resolvingBiNMOS synchronizer for parallel processorinterconnect,"
in IEEE Journal of Solid-State Circuits, Feb. 1995,vol. 30, pp. 133 {139.

[26] C. Dike and E. Burton, \Miller and noisee�ects in a synchronizing ip-op," in IEEE Journal
of Solid-State Circuits, June 1999,pp. 849{855.

[27] Uming Ko and P. T. Balsara, \High-p erformanceenergy-e�cien t D-ip-op circuits," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Feb. 2000,pp. 94{98.

[28] D. J. Kinniment, A. Bystrov, and A. V. Yakovlev, \Synchronization circuit performance," in
IEEE Journal of Solid-State Circuits, Feb. 2002,pp. 202{209.

[29] Y. Semiat and R. Ginosar, \Timing measurements of synchronization circuits," in Advanced
Research in Asynchronous Circuits and Systems, May 2003,pp. 68{77.

[30] R. Ginosar, \F ourteen ways to fool your synchronizer," in Advanced Research in Asynchronous
Circuits and Systems, May 2003,pp. 89{96.

[31] J. N. Seizovic, \Pip eline synchronization," in Advanced Research in AsynchronousCircuits and
Systems, Nov. 1994,pp. 87{96.

[32] F. U. Rosenberger,C. E. Molnar, T. J. Chaney, and T.-P Fang, \Q-mo dules: internally clocked
delay-insensitive modules," in IEEE Transactionson Computers, Sept. 1988,vol. 37, pp. 1005{
1018.

[33] K. Y. Yun and A. E. Dooply, \P ausible clocking-based heterogeneoussystems," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Dec. 1999,pp. 482{488.

[34] J. Muttersbach, T. Villiger, and W. Fichtner, \Practical designof globally-asynchronouslocally-
synchronoussystems," in Advanced Research in AsynchronousCircuits and Systems, Apr. 2000,
pp. 52{59.

[35] S. Moore, G. Taylor, R. Mullins, and P. Robinson, \P oint to point GALS interconnect," in
Advanced Research in Asynchronous Circuits and Systems, Apr. 2002,pp. 62{68.

[36] D. S. Bormann and P. Y. K. Cheung, \Asynchronous wrapper for heterogeneoussystems," in
IEEE International Conference on Computer Design, Oct. 1997,pp. 307{314.

BIBLIOGRAPHY 64

[37] C. J. Myers and A. E. Sjogren, \In terfacing synchronous and asynchronous modules within a
high-speedpipeline," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Oct. 2000,pp. 573{583.

[38] J. Kessels,A. Peeters, P. Wielage, and S. Kim, \Clo ck synchronization through handshake
signalling," in Advanced Research in Asynchronous Circuits and Systems, Apr. 2002, pp. 59{
68.

[39] J. Mekie, S. Chakraborty, and D. K. Sharma, \Ev aluation of pausible clocking for interfacing
high speed IP coresin GALS framework," in International Conf. on VLSI Design, Jan. 2004,
pp. 559{564.

[40] R. Dobkin, R. Ginosar, and C. P. Sotiriou, \Data synchronization issuesin GALS SoCs," in
Advanced Research in Asynchronous Circuits and Systems, Apr. 2004,pp. 170{180.

[41] C. E. Molnar, I. W. Jones,W. S. Coates,and J. K. Lexau, \A FIFO ring performanceexperi-
ment," in Advanced Research in Asynchronous Circuits and Systems, Apr. 1997,pp. 279{289.

[42] J. Ebergen, \Squaring the FIFO in GasP," in Advanced Research in Asynchronous Circuits
and Systems, Mar. 2001,pp. 194{205.

[43] T. Chelcea and S. M. Nowick, \A low-latency FIFO for mixed-clock systems," in IEEE
Computer Society Workshop on VLSI , Apr. 2000,pp. 119{126.

[44] C. Cummings, \Simulation and synthesis techniques for asynchronous FIFO design," in Syn-
opsysUsers Group, Oct. 2002.

[45] \NC{Verilog," http://www.cadence.com/products/functional_ver/nc- verilog/index.
aspx.

[46] \Magic { a VLSI layout system," http://vlsi.cornell.edu/magic/ .

[47] \HSPICE," http://www.synopsys.com/products/mixedsignal/hspice/ .

[48] \Digital integrated circuits { the IRSIM corner," http://bwrc.eecs.berkeley.edu/Classes/
IcBook/IRSIM/ .

[49] B. S.Amrutur, Designand analysisof fast low power SRAMs, Ph.D. thesis,Stanford University,
Stanford, CA, USA, 1999.

[50] L.-S. Kim and R. W. Dutton, \Metastabilit y of CMOS latch/ip-op," in IEEE Journal of
Solid-State Circuits, Aug. 1990,pp. 942{951.

[51] F. U. Rosenberger,C. E. Molnar, and R. W. Dutton, \Comments, with reply, on `metastability
of CMOS latch/ip-op'," in IEEE Journal of Solid-State Circuits, Jan. 1992,pp. 128{132.

[52] A. Iyer and D. Marculescu, \P ower and performanceevaluation of globally asynchronouslocally
synchronousprocessors,"in International Symposium on Computer Architecture, May 2002,pp.
158{168.

[53] C. L. Seitz, Intr oduction to VLSI Systems, chapter 7, \System Timing", C.A. Mead and L.A.
Conway, Eds. Addison-Wesley, Reading, MA, 1980.

[54] H.-S. Jung and M.-K. Lee, \Analysis and implementation of interfacefor heterogeneoussystem,"
in Asia Paci�c Conference on ASICs, Aug. 2000,pp. 21{26.

[55] T. Chelceaand S. M. Nowick, \Robust interfacesfor mixed-timing systemswith application to
latency-insensitive protocols," in Design Automation Conference, June 2001,pp. 147{150.

