A DUAL-CLOCK FIFO FOR THE RELIABLE TRANSFER
OF HIGH-THR OUGHPUT DATA BETWEEN
UNRELA TED CLOCK DOMAINS

By

RYAN WILLIAM APPERSON
B.S.E.E. (University of Washington) March 2002

THESIS
Submitted in partial satisfaction of the requiremerts for the degreeof
MASTER OF SCIENCE
in
Electrical and Computer Engineering
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIF ORNIA
DAVIS

Approved:

Chair, Dr. Bevan Baas

Member, Dr. Rajeevan Amirthara jah

Member, Dr. Venkatesh Akella

Committee in charge
2004

{i{

¢ Copyright by Ryan William Apperson 2004
All Rights Resened

Abstract

First-In First-Out (FIF O) memory structures are widely usedto bu er the transfer of data
between processingblocks. High performanceand high complexity digital systemsincreasingly are
required to transfer data between modules of di ering and even unrelated clock frequencies. This
thesis preseris an encompassingdescription of the motivation and design decisionsfor a robust
and scalabledual-clock FIFO architecture. It also investigatesthe hardware designissuesinvolved
in this architecture through the custom CMOS circuit design of the dual-clock FIFO architecture.
The proposeddesignutilizes an e cien t and low-latency memory array structure and can operate
in applications where multiple clock cyclesof latency exist betweenthe data producer, FIFO, and
the data consumer. This feature is increasingly relevant in high-speed designswhere multiple clock
cyclesare not uncommonly neededto transmit data betweenmajor processingblocks. It alsoincludes
a con gurable synchronization circuit that robustly syndhronizes asyndronous signals within the

FIFO.

{ii {

Ac knowledgmen ts

This thesis is dedicated to all the people who have helped me along way to achieve this
accomplishmen. | would like to thank my friends and family for their guidance and support. |
would especially like to thank my parents and Michelle for all their love and support through all the
challengesof graduate school. Thank you to all the members of VCL, especially Mike Lai, Omar
Sattari and Mike Meeuwsen for their encouragemeny advice, support and all the laughs. | would
alsolike to thank Dr. Amirthara jah and Dr. Akella for taking the time to be on my committee and
all of their feedba& and suggestions.Additionally , thank you to Intel for their support of VCL and
providing the computers that performed much of the work for this thesis. Finally, | would like to

thank my advisor, Dr. Baas, for his support, advice, optimism and encouragemenh

{iii {

cContents

Abstract ii
Ac knowledgmen ts iii
List of Figures Vi
List of Tables vii
1 Intro duction 1
1.1 ProjectGoals e 2
1.1.1 Target System e 2

1.2 OVEIVIEW . . . o e 3

2 Single-Clo ck FIF Os 5
2.1 Linear FIFOS e 6
2.2 Circular FIFOS e 7
2.2.1 Methodsfor usingall N words 10

222 RESENESPACE. i o e e 11

2.2.3 Arithmetic hardware 11

2.2.4 Communication protocols 12

3 Synchronization 15
3.1 Metastability e 16
3.1.1 Background 16

3.1.2 Basicfailure model 17

3.1.3 Final remarks. e 18

3.2 Syndironization Strategiesfor Asynchronousinputs 19
3.2.1 Increasing metastability resolutiontime 19

3.2.2 Pausingtheclock e 21

3.3 Syndironizing Multi-Bit Words 22

4 Dual-Clo ck FIF O Arc hitecture 24
4.1 Background e e e 24
4.2 Architecture Details 25
4.2.1 Addressand cortrol information, 25

422 RESENESPACE. i e e e e e 27

4.2.3 Communication interface 28

{iv{

5 Hardw are Implemen tation
5.1 Designand Verication Process. i i i i e
5.2 Memory Design. e
521 SRAM cell
5.2.2 Architecture
5.3 Syndronizer Design e e e e e
5.4 Gray/Binary CONVEIErS o i e e e
541 Background
5.4.2 Circuit design. e
5.5 Binary INCremernters e e e e e e e

5.6 Resene Logic
5.7 Comparators

5.8 Top-level FIFO Module e
5.8.1 Performanceand analysis

6 Conclusion
6.1 Summary . .
6.2 Future Work

Bibliograph y

{v{

29
29
30
31
32
38
45
45
47
48
49
52
53
56

60
60
60

62

List of Figures

2.1 Target systemsfor dual-clock FIFOs 6
2.2 Linear shift-register FIFO block diagram 7
2.3 Linear elastic FIFO block diagramo 7
2.4 Circular FIFO block diagram 8
2.5 Typical write and read addresspointer schemefor a circular FIFO 9
2.6 Circular FIFO with empty de ned aswhenwr_ptr == rdptr 9

0

2.7 Circular FIFO with full de ned aswhenrd_ptr == wrptr 1
2.8 FIFO to producer write path shawving multi-clo ck latency from full signal to halt in

write data stream. L 11
2.9 Systemarchitecture using a FIFO module for communication 12
3.1 Generalized ip- op responsetime versusdata arrival time 18
3.2 An N elemen chain syndhronizer circuit oL 20
3.3 Sampling of a multi-bit transition word and a single-bit transition word 23
4.1 Detailed diagram of dual-clock FIFO architecture 26
5.1 Basicten transistor SRAM cell 31
52 SRAM celllayout e 33
5.3 SRAM write cortrol signalgeneration oL 34
5.4 Simulation waveformsfor writing a\0" to anSRAMcell 35
5.5 Simulation waveformsfor writing a\l" to anSRAMcell. 35
5.6 SRAM read cortrol signalgeneration. oo 36
5.7 Simulation waveformsfor readinga\0" from an SRAMcell 36
5.8 Simulation waveformsfor readinga\1" fromanSRAMcell 37
5.9 Syndronizer elemen with con gurable metastability resolutiontime 39
5.10 Schematic of negative edgetriggered syncironizer ip-op with local clock buers . 39
5.11 Metastableevert of D ip-op 42
5.12 Measuringthe parameter for synchronizer 43
5.13 Plot of HSPICE data usedfor determining To parameter. 44
5.14 Binary to Gray code corversioncircuit Lo 46
5.15 GeneralizedN -bit Gray to binary corverter architecture 46
5.16 Six-bit Gray to binary corversioncircuit L . 48
5.17 Six bit binary incremerter circuit L L 49
5.18 Dot diagram represeting \In Resene" adder function 50
5.19 Hardware implementation of a full addercircuit 51
5.20 Three input, six bit adder for determing the \In Resene" condition 52
5.21 Six bit comparator for determing the \empty" condition 53
5.22 Pipeline diagram for the write sideofthe FIFO 54
5.23 Pipeline diagram for the read sideofthe FIFO 55
5.24 Final layout for the dual-clock FIFO module 57

{vi{

List of Tables

21
2.2

51
5.2
5.3
54
55

Four primary states of a generaldata transferring interface 14
States of a data transferring interface with equivalent FIF O state when resene space

isutilized 14
Devicesizingfor SRAM cell 32
Devicesizing for ip-op synchronizer 40
Metastability parametersfrom HSPICE numerical simulator 42
Estimated meantime betweenfailures 45
Area breakdown for the FIFO hardwaremodule. 56

{ vii {

Chapter 1

Intro duction

Syndhronous systemshave traditionally beenthe predominant method of implemertation
in digital electronicsdesign. Nearly all presen day systemsutilize syndhronousdesigntechniques[1].
However, in order for this to be accomplished,a global clock referencemust be accurately supplied
to all areasof the circuit at almost precisely the sametime. Transistor sizeshave been cortin ually
shrinking, while both clock frequenciesand designautomation tool capabilities have beenincreasing.
This is leading to larger and more complex, high-speed system implementations. Unfortunately,
global interconnect scalinghasnot beenable to maintain the sameperformanceincreased2], causing
distribution of a global clock signalto becomea major concernin systemdesign. This has resulted
in clock distribution requiring more hardware and increaseddesigntime and e ort.

One solution for coping with this problem is to utilize self-timed or asynchionous circuits,
which lack a global timing reference. However, seeral obstaclesprevent a major transition to this
designstyle, including the lack of mature designtools for asyndronous designand the unwillingness
of the industry to incur the cost and risk of moving away from a design style that has been so
successfulin the past [3]. An alternative approad is to create systemsthat mix asyndronous and
syndironous designtechniques. This designstyle is referred to as a Globally Asynchronous Locally
Synchronous (GALS) design [4]. In this design paradigm local blocks are built using traditional
syndironous designtechniques, but these synchronous blocks do not shareglobal timing information
and are asyndironous with respect to ead other.

Unfortunately, while it is often conveniert to divide a systeminto multiple sub-componerts,
it is unlikely that these componerts will be completely autonomous. Accordingly, data transfer is

generally required betweenlocal synchronous blocks. Accomplishing this task reliably (i.e., without

CHAPTER 1. INTR ODUCTION 2

data corruption or loss) and e cien tly (i.e., minimizing area and energy dissipation) is one of the
primary challengesin GALS designs.

One structure that is particularly well-suited for this task is the First-In First-Out (FIF O)
memory structure. As indicated by its name, data items o w through the structure in the prescribed
fashion, wherein the rst data item that enters the structure will be the rst data item to leave the
structure. A basicFIF O architecture canbemodi ed to accommalate two independert clock inputs.
Data passingthrough the FIF O module will ernter with referenceto oneclock and exit with reference

to the other clock. In this way, data can be safely passedbetweenindependen clock domains.

1.1 Pro ject Goals

There are three primary goals for this project. The rst is to researth synchronization
strategies, asyndironous designand FIF O design, focusing on how this information can be applied
to the dewelopmert of an e ective means of transporting data between two unrelated clock do-
mains. Secondly this knowledge will be usedto designa module capable of reliably transporting
high-throughput data between independertly clocked processingunits. This module will then be
integrated into two dierent RTL level models of the working GALS multi-pro cessorsystem. The
rst is a behavioral model and the secondis a more complex, cycle-accuratestructural model. The
nal goalis to designand implemert the circuits and full custom layout for the FIFO module for

fabrication in a deepsub-micron CMOS technology.

1.1.1 Target System

To help gain perspective on the designchoicesand requiremerts that motivated the design
and implementation of the dual-clock FIF Os presened in this thesis, it is usefulto give an overview
of the target application. The FIFO was designedfor implementation in the AsAP (Asynchronous
Array of Simple Processors) system chip [5]. The AsAP system s a parallel, recon gurable two-
dimensional array of processors.Each processorhasa 16-bit xed point datapath, which is divided
into a 9-stage pipeline. The instruction set architecture follows a RISC type design style. Each
processotasits own small memory spacethat is divided into separatemodulesfor data, instructions
and con guration values. The simplicity of the architecture, along with the small local memories,
facilitates several of the primary designgoalsincluding high-speed,low area, good energy-e ciency

and easeof programmability. Becausethe architecture is targeted to digital signal processingtasks,

CHAPTER 1. INTR ODUCTION 3

seeral special purposemodulesare included, such asaddressgenerators,repeat logic and a multiply-
accumnulate unit.

Clock generationis doneindependertly at the processorevel. This is accomplishedby using
a programmable ring oscillator, which can be con gured to operate over a range of frequencies.The
clock frequency can be cortrolled with special con guration instructions. Accordingly, the clock
frequency can change dynamically during run time. Additionally, if a processorbecomesidle, the
clock can also be stopped by the processorcortrol hardware until it can again perform useful work.
In general, the clock pausesbasedon either the availability of the data items required to execute
the processor'scurrent instruction or the downstream processor'sability to acceptdata. While the
clock is stopped when the processorbecomesidle, unlike someapplications, the clock is not paused
or modi ed for synchronization purposes(seeChap. 3-5 for details). Becausethe processorclocks
are generatedand cortrolled locally, ead processoroperatesasyndronously to the other processors
in the array.

The processorarray connectionsare software con gurable. Each processorin the array has
two input ports and one output port. Each input port can be connectedto the output port of a
neighbor processor. There can be no more than two input sourcesfor a single processor. However,
one processorcan sourceits output data to asmany as four processors.

The dual-clock FIF O modulesdescribedin this thesisare the medanism for communication
betweenthe independen processorcoresand the o -c hip I1/O devices. Becauseeat processorhas
its own independert and dynamic clock, the FIFO must both bu er and reliably syndronize the
data being transmitted betweenprocessors.ldeally, this is a high-throughput operation with aslittle
latency as possible. The FIFO also hasto supply a wake-up signal to any neighboring processors
that are halted waiting on the FIFO. As mentioned the local clocks will pausewhen the processor
becomesidle. When the clock is paused,all activity in that processoris stopped and all register
values are frozen. Accordingly, a combinational signal must be supplied to restart the processor
clock sothat it can wake-up and perform the task that it was waiting to complete. Details of this

asyndronous wake-up signal are covered in section 5.8.

1.2 Overview

This thesis addressesthe design of dual-clock FIFOs and the necessarybadkground in-
formation for understanding the problems this designaddresses.We are particularly interested in

solutionsthat enablethe transfer of data betweenmodulesfrom completely unrelated clock domains.

CHAPTER 1. INTR ODUCTION 4

Chapter 2 introduceskey structures and parametersfor all styles of FIFO bu ers by analyzing the
single-clack case. Chapter 3 discussesnetastability and syndhronization badkground and issuesthat
needto be consideredwhen working with multiple clock domain systems. Chapter 4 describesexten-
sionsto single-clack FIF Osthat enableoperation in dual-clock settings and preseris an architecture
for the design of robust and e cien t solutions for implemerting a dual-clock FIFO. Chapter 5
describes the hardware implementation of the dual-clock FIFO. Chapter 6 summarizesthe work

preseried and suggestsareasfor future work.

Chapter 2

Single-Clo ck FIF Os

First-In First-Out (FIFO) buer structures nd widespreadusein many digital system
applications [6]. In general, the use of FIFOs falls into one of two categories. The rst is for
data rate matching between modules producing and consumingdata at di erent rates. Since data
ow into and out of an interface must be equal over long periods of time, rate matching implies
a producer and consumerwith dierent patterns of data bursting over time. A secondcategory,
which is becomingincreasingly important with high clock rate systems,includes applications that
useFIF Os to transfer data betweenblocks in clock domainsthat are unsyndironized|meaning the
phaseand frequency of the two clocks are not matched. This mismatch may be intentional (e.g., an
SoCwith multiple clock domains) or unintentional (e.g.,in a large clock distribution network which
has signi cant jitter and skew). Examples of these can be seenin Figure 2.1.

A particularly useful example of a FIFO in the secondcategory is a dual-clock or mixed-
clock FIF O. These FIF Os are also sometimescalled asynchionous FIF Os, however, since the term
asynchonous implies a lack of a clock, the term is likely better resened for circuits without clocks.
Dual-clock FIF Os operate with two clocks, with varying levelsof timing similarity. Dual-clock FIF Os
are coveredin Chapter 4.

To understand the fundamertals behind dual-clock FIFOs it is usefulto considerthe case
of a single-clack synchronous FIF O, becausemany of the sameconceptsapply. This chapter covers

thesefundamertal principles of FIF Os.

CHAPTER 2. SINGLE-CLOCK FIFOS 6

Clock A Clock B
Y Y
Data Data Data

-—p Module A |—p Module B —

Example 1: Intentional clock mismatch

Global Clock
tskew + tjitter
| W
\ v
V V
Data Data Data

-—p Module A |—p Module B —>

Example 2: Unintentional clock mismatch

Figure 2.1: Target systemsfor dual-clock FIF Os

When comparing FIF O designs,a number of designparametersare important; they include:
Robustness|data can not be lost, corrupted, or duplicated;
High-throughput;
Energy-e ciency;
Scalability|the most widely-applicable designswill allow bu er sizesto scaleover large ranges;
Low-latency for latency-sensitive applications; and

Support high clock rates for high performance.

2.1 Linear FIF Os

The simplest FIF O structure consistsof a linear chain of latches or ip-ops connected
serially as a shift register. Data is shifted into one end of the chain and propagatesthrough every
memory elemen until it reachesthe end asshown in Figure 2.2. This FIF O is synchronous sinceall
movemen of data requiresa clock edge.

Alternativ ely, an elastic FIFO can be constructed that usescontrol signal handshalesto

propagate data from location to location. Unlike the syndironous case,a datum can propagate

CHAPTER 2. SINGLE-CLOCK FIFOS 7

Producer Consumer

Data Data
1 2 el N
Clock Al‘ |

Figure 2.2: Linear shift-register FIF O block diagram

Producer Consumer
Data Data
-, i e
<« <«—> S L = 2 >
Control Control

Figure 2.3: Linear elastic FIF O block diagram

through the FIF O without any newitems entering. This resultsin the FIF O being at various degrees
of fullness, hence,the name elastic. FIFOs of this nature t nicely into asyndronous designsand

many examplesof these can be found in the literature [7] [8] [9]. An example of this type of FIFO

can be seenin Figure 2.3.

Drawbadks of theseapproadesinclude high latency, low power e ciency and low memory
densitylwhic h make scaling more dicult. High latency and power dissipation arise from the
fact that eadh datum must ow through every elemen of the FIFO memory. Additionally, in the
syndronous caseevery memory elemer requiresa clock signalthat impedesscalability and increases
power consumption. Low memory density is causedby the high areaper bit of latchesand ip- ops.

Many extensionsof this basic FIF O structure have beenproposedwith the key di erences
being the path by which data travels through the structure. These extensionsprovide worst case
paths that are shorter than the total nhumber of memory locations in the FIFO, resulting in lower
latencies and improved energy e ciency . Examples of these variant structures are square FIF Os,

parallel FIFOs, tree FIF Os and folded FIF Os [8].

2.2 Circular FIF Os

A more e cien t method to construct a FIFO is to createa circular bu er using an array of
memory elemens designedso that data can be written to and read from arbitrary locations in the
memory array. Thesestructures are alsocalled parallel FIF Os [10] and are often built usingcommon
SRAM or DRAM memories. The random accesshature of memory arrays enableslow minimum

latencies, and high energy e ciencies comparedto linear FIFOs. Scalability is also dramatically

CHAPTER 2. SINGLE-CLOCK FIFOS 8

Producer Consumer
- Data Dat >

Memory

Array
Control| write S| owr Rd | o Read | Control

Logic T lAddr Addr Logic

N words

Figure 2.4: Circular FIF O block diagram

improved due to the fact that clock distribution is not directly a ected by the FIFO size and the
memory density is higher. In the evernt of a bu er size change, generally only very minor cortrol
logic changesare required. Figure 2.4 shaws a high-level block diagram of a circular FIFO. Note that
the read and write cortrol blocks in single-clack FIF Os share a common clock so their separation
represens a functional division, not necessarilya physical one. The write circuitry cortrols data
being written to the FIF O and tests whether the memory is full. The read circuity cortrols the ow
of data out of the FIFO and is concernedwith determining when the memory becomesempty.
Control circuits for circular FIF Os are more complexthan cortrol circuits for linear FIF Os
due to the needto managenon-regular write and read accessesvith special caseswhen the array is

full or empty. In particular, common failure modesfor these FIF Os include the following cases:
Under owlin valid or duplicate data are transmitted by the FIFO,
Over ow|v alid data in the memory are overwritten,
Deadlock|an interfacing condition that permanertly prevents operation of the FIFO, and

Stuck datalv alid data remain in the FIFO, but are not read out even though read requests

are made.

All parallel FIF Os must keeptrack of three mutually-exclusive states: 1) empty (also the
initial state), 2) full, and 3) data occupancy betweenempty and full.

Tracking valid data within a FIFO is typically accomplishedwith one of two approades.
The rst method involves using an N -bit register where ead bit represens the validity of data in
the memory and N is the number of words in the memory. A secondmethod is to maintain read
and write (or headand tail) addresspointers which indicate the beginning and end of the valid data

rangein the memory. Figure 2.5 shavs a schemewhere the write addresspointer (wr_ptr) indicates

CHAPTER 2. SINGLE-CLOCK FIFOS 9

Addr 0
rd_ptr
Addrl [-—
Addr 2
wr_ptr
L Addr 3

- vaiidDaa

Figure 2.5: Typical write and read addresspointer schemefor a circular FIFO

Maximum
Empty Occupancy
Wr_ptr Addr0 rd_ptr wr_ptr Addr0
—p Addrl [«—— —m| Addrl rd_ptr
Addr 2 Addr2 |e——
: :
Addr N-2 Addr N-2
Addr N-1 Addr N-1
Condition: Condition: [] - validData
wr_ptr = rd_ptr wr_ptr +1=rd_ptr

Alt: wr_ptr =rd_ptr - 1

Figure 2.6: Circular FIFO with empty de ned aswhenwr_ptr == rd_ptr

the memory location for the next data write, and the read addresspointer (rd_ptr) indicates the
location of the next memory read. Other schemesare possible,the most common of which o set
their pointers by one memory location from the example shavn here.

Giventhe useof read and write pointers, there aretwo primary methodsto de ne the empty
and full conditions. As shown in Figure 2.6, the rst possibility is to de ne the empty condition
as occurring when wr_ptr is equal to rd_ptr. The \maxim um occupancy” (full { 1) condition is
indicated whenwr_ptr + 1 = rd_ptr or alternatively, whenwr _ptr = rd_ptr { 1. The secondcaseis
shown in Figure 2.7 where the full condition is indicated by equality of rd_ptr and wr_ptr and the
\minim um occupancy" (one datum) condition is indicated by rd_ptr = wr_ptr { 1.

Clearly, theseschemespresen problemsin represening all possiblestates becausethe case
where rd_ptr = wr_ptr becomesambiguous without either keepingtrack of the pointer history or
preverting the pointers from reading this state in either the full or empty condition as mertioned
above. This is becausethere are N + 1 levels of occupancy (0 to N words) but only logz(N) bits
in the addresspointers|represen ting only N possiblevalues. (There are actually many more total
states, but given one address,say rd_ptr, there are N + 1 possiblestatesfor wr_ptr and all such cases
are equivalert.)

For the caseshown in Figure 2.6, the N possible represenations are used for memory

CHAPTER 2. SINGLE-CLOCK FIFOS 10

Minimum
Occupancy Full
Addr 0 rd_ptr wr_ptr Addr 0 rd_ptr
wr_ptr Addrl |(—— ——p| Addrl |[«——
——p| Addr2 Addr 2
Addr N-2 Addr N-2
Addr N-1 Addr N-1
Condition: Condition: -Vl
rd_ptr + 1 =wr_ptr rd_ptr = wr_ptr D Valid Date

Alt: rd_ptr =wr_ptr - 1

Figure 2.7: Circular FIFO with full de ned aswhen rd_ptr == wr_ptr

occupanciesof 0 to N 1 words. This results in a straightforward initial state (empty) and logic
that must prevent the Nth memory location from being used.

For the caseshawn in Figure 2.7, the N possiblevalues of the pointers are used for oc-
cupanciesof 1 to N words. Since no empty state is possible, an appropriate initial state requires

additional logic and the usefulnessof this schemeis limited.

2.2.1 Metho ds for using all N words
Adding a state bit

There are two basic methods for using all N + 1 memory occupancy states. The rst
involvesadding a state bit to handle previously unrepresenable casesand keeptrack of the pointer
history. For example, in the situation shown in Figure 2.6, the extra state bit could be used to
indicate when the memory was full to distinguish the two caseswhen both addresspointers were
equal. Similarly, the schemedepicted in Figure 2.7 could usethe additional state bit to indicate the

empty condition.

Increasing the size of the address pointers

The secondmethod is to increasethe sizeof the addresspointers by onebit. This additional
bit increasesthe range of the pointers from modulo N to modulo 2N . Read and write pointers that
are equal modulo 2N unequivocally indicate an empty FIFO. On the other hand, read and write
pointers that dier by N modulo 2N indicate a full FIFO since the wr_ptr must be N ahead of
rd_ptr. This method will nhormally be simpler to implemert than the method of adding a state bit.
Empty detection is straightforward and full detection is accomplishedby an equivalencetest of the

lower log,(N) bits and an XOR of the addresspointers' MSBs. For correct operation, the following

CHAPTER 2. SINGLE-CLOCK FIFOS 11

1 FIF O Write

Producer 2 | Interface

(o
Write : !
Logic ‘ 1

R Full

! ! Logic

pr oducer | A VAN i

Figure 2.8: FIFO to producer write path shaving multi-clo ck latency from full signal to halt in
write data stream

inequalities must hold at all times.

rdptr wr_ptr rdptr + N (2.1)

2.2.2 Reserve space

Some applications require multi-cycle delays between a FIFO and the interfacing data
producer or consumer. When multiple clock cycles separatethe FIFO from the consumer, there
is a possibility that data requestswill be made to the FIFO that it will not be able to fulll.
This normally does not presert a problem since a valid signal accompatrying read data preverts
the misinterpretation of unful lled read requests. However, when multiple clock cycles separate
the FIFO from the data producer, the possibility of over ow exists if special precautions are not
taken. Figure 2.8 illustrates this caseshawing the critical path from the full detection logic through
the data producer's logic, and badk to the FIFO's write port. The total delay in clock cycles
iS tota = 1+ produwcer T 2. Prevertion of over ow can be accomplishedin one of two ways:
either by the addition of a secondaryFIF O of at least o5 Words, or by the FIF O signaling the data
producer to stop writing when its occupancy reachesN total = Reserve words|whic h reduces
the e ectiv e size of the memory under most conditions. Becauseof its simpler implementation, the

secondmethod is generally preferred.

2.2.3 Arithmetic hardw are

For the caseof addresspointers of length log,(N) + 1 bits, and a non-zeroReserve space,

we desiresimple logic to determine when to signal the data producerto stop sendingdata (wr_hold).

CHAPTER 2. SINGLE-CLOCK FIFOS 12

Data L Data L
Control Control
Producer Module » \Wwrite FIFO Read » Consumer Module
__Control |Interface Interface| _Control

Figure 2.9: Systemarchitecture using a FIF O module for communication

Sincewr_ptr rd_ptr is the occupancy of the memory, the signal threshold is then,

wr_ptr rd_ptr N Reserve (2.2)

wr_ptr rd_ptr + Reserve N (2.3)

We prefer the form of Equation 2.3 becausewe can easily test whether a value is greater than or
equalto N when using logz(N) + 1 bit words by cheking the MSB of the sum|the inequality is
true if the MSB = 1. The left hand side of Equation 2.3 is calculated with a three-input, logo(N)+ 1
bit adder. While corverting valuesto signed 2's complemen form will certainly work, it is not
required and simple unsignedvalueswill work properly for all casessincemodulo 2N arithmetic will
e ectiv ely map all negative valuesto their value plus 2N .

Other required arithmetic logic for the read and write sidesis roughly equivalert. Binary
incremerters are neededfor addressgeneration and comparators are neededfor empty (and full
if resene spaceis not required) detection. In somecases,a value indicating the occupancy of the
memoryis desired. Hardwareto calculatethis di erence canbe sharedwith the previously-mertioned

adder.

2.2.4 Comm unication proto cols

When considering the interface protocol, a producer module refers to a module which is
transmits data and a consumer module refersto a module which is receives data. Accordingly, a
FIFO module lies in between a producer and a consumer module, with the FIFO write circuitry
interfacing to the producer module and the FIF O read circuitry interfacing to the consumermodule.
This is shown in Figure 2.9.

A channel refersto a communication connection betweentwo modules, and the points of
connectionare called ports [11]. The FIFO shown in Figure 2.9 hastwo channels. The write channel
refersto the channel connectinga producer to the input (write) port of the FIFO. The read channel

refersto the channel connecting a consumerto the output (read) port of the FIFO. Each channel

CHAPTER 2. SINGLE-CLOCK FIFOS 13

has one cortrol line going in ead direction.

A communication channel should always have one active port and one passive port [11].
One concernin the interface designis deciding which port will be passive and which port will be
active. For the FIF O, eat channelis independert and the choicein port assignmetts is arbitrary , so
long as ead channel has one active and one passiwe port. For example,looking at the write channel
there are two choicesfor the signalling convertion. One choice is that the cortrol line leaving the
FIF O is active and the cortrol line leaving the producer is passive. The terms request and valid,
respectively, t well with this convention. Sincethe FIFO is the active port, any time it wants data
it will indicate this on the requestline. It will then wait for the producer to sendit data. The
producer indicates this ewvent with its valid line. In the secondcase,the FIFO write interface is
the passiwe port and the producer is the active port. In this situation the producer will indicate
that it wants to senddata using the valid line. When the FIFO is ready to acceptthe data it will
acknowledgereceipt of this data with its cortrol line.

The samesituation exists on the read channel, with the only di erence beingthat the FIFO
read interface is producing data and the consumeris receiving data. The formation of the read port
signalling convertion can be donein a manner analogousto the write side case.

From the FIF O designstandpoint, there is no inherent advantage to onesignalling approac
over another, so the target application will likely determine the choice. Table 2.1 summarizesall
the possiblestates of one interface channel. The data valid and data request columns indicate the
cortrol line status in ead of the cases. The consumeris assumedto have the active port in this
case. The nal two columns are mutually exclusive and represett the equivalernt state of a FIFO
if the interface state in the far left column were mapped onto the write channel or read channel,
respectively. For example, the secondrow of Table 2.1 shows the casewhere the producer has no
data and the consumerwants data. The write side of the FIF O is always a consumer, so if this
state were mapped onto the write channel it meansthat the producer (the upstream module) has
no data, but the FIF O write interface can acceptdata, sothe FIFO is consequetly not full. This is
noted in the column showing the equivalent FIF O state if the interface were mapped onto the write
channel. Alternativ ely, if this state were mapped onto the read interface of the FIFO, the FIFO
state would be empty sincethe read side of the FIF O is always a producer and the producer has no
data. As noted, theseinterfacesare not mapped onto the read and write channelsat the sametime,
even though they are listed in the samerow.

Having aresene spaceincreaseghe number of possibleconditions within the write interface

CHAPTER 2. SINGLE-CLOCK FIFOS

14

FIFO state if FIFO state if
Data Data interface is mapped | interface is mapped
Interface State Valid Request| to write channel to read channel
1) Producer has no data, No No Full Empty
Consumerdoesn't want data
2) Producer has no data, No Yes Not full Empty
Consumerwants data
3) Producer has data, Yes No Full Not Empty
Consumerdoesn't want data (not receiving) (not transferring)
4) Producer has data, Yes Yes Not Full Not Empty
Consumerwants data (receiving) (transferring)

Table 2.1: Four primary states of a generaldata transferring interface

Data Data FIFO
Interface State Valid Request State
1) Producer has no data, No No Not Receiving data
FIF O doesn't want data (FIF O Full or in resene)
2) Producer has no data, No Yes Not Receiving data
FIF O wants data (Not full and not in resene)
3) Producer has data, Yes No Receiving data
FIF O doesn't want data into resene space
4) Producer has data, Yes Yes Receiving data
FIF O wants data into non-resene space

Table 2.2: States of a data transferring interface with equivalent FIF O state when resene spaceis

utilized

logic of the FIF O. Table 2.2 enumeratesthese changes. Sincethe resene conditions generally only

apply to the write side of the FIFO and the write side is always a consumer,the consumerif now

call the FIFO in the leftmost column. To avoid over ow conditions, no data can be requesteduntil

there are at least reserve empty locations in the FIFO. Accordingly, the e ectiv e size of a FIFO

with resene spaceis reducedto the number of FIFO memory locations minus the number of resene

locations.

15

Chapter 3

Synchronization

One of the fundamental problems in systemslacking a single global timing referenceis
correctly ordering events. This processis generally referred to as syndironization. Somesystems
operate with no senseof global timing, and instead operate in direct responseto signal transitions.
This is referred to as asyndironous circuit design [11]. In these cases,syndronization is often
unnecessary{12]. However, an alternative method for circuit designemploys a global clock signal,
which carries timing information for all signalswithin a specic area. A clock domain is speci ed
asan areawhere all the signalsutilize the sameclock signal for their timing reference[12]. Circuits
that operate in referenceto a speci c clock are referred to as syncironous circuits.

Systemsdesignsof the past and present day aretypically built to be synchronous. However,
as mertioned in Chapter 1, maintaining this trend is becomingdi cult and expensiwe, so future
designswill likely need alternative approachesto solve the global timing issue. One option is to
move to fully asyndironousdesign,but, as mentioned, a complete transition to this style is unlikely
in the near future. To overcomethese obstaclesa more moderate design paradigm is to break the
systemup into multiple clock domains, and not maintain a speci ¢ timing relationship betweenclock
domains. Systemsof this type are also called Globally-Asynchronous, Locally-Synchronous (GALS) .
Chapiro [4] is often cited asone of the rst in-depth investigators of GALS architectures.

In general, the timing relationship between a signal and a clock can be cast into one of
v e categories[12] [1]: 1) Syndchronous, where the signal matchesthe clock in both frequency and
phase; 2) Mesachronous, where the signal is the samefrequency as the clock, but has a constart
phase di erence; 3) Plesiochronous where the signal is at a frequency close, but non-idertical to

the clock frequency which implies a varying phasedi erence; 4) Periodic, where the signal has an

CHAPTER 3. SYNCHRONIZATION 16

unknown relationship to the clock, but is periodic in nature; and 5) Asynchronous, where the signal

is completely unrelated to the clock and signal transitions are arbitrary .

3.1 Metastabilit vy

Metastability is a fundamenrtal problem presert when interfacing asyndironous blocks [12]
[13]. Syndironous systemsrequire signals on the inputs of registersto be stable around the active
edgeof the clock signal. We refer to this time period as the critic al window, and its boundariesare
set by the setup and hold time requiremerts of registers. If this requiremert is not met, the value
may not be accurately sampledby the system and the output behavior of the sampling elemer is
unknown. This results in the output of the sampling elemen resolving to one of three states: 1)
the input value before the transition, 2) the input value after the transition, or 3) an intermediate
value known as the metastable point. This intermediate state exists in all sampling elemeris with
bistable componerts [14]. This state is not stable due to the high gain of the feedbad loop, but
the responsetime of the ip-op leaving this state is non-deterministic [15]. If a sampling circuit
with no regenerative elemert is used and timing is violated, intermediate valuesthat are sampled
(i.e., the input is sampledsomewherealong the transitioning data edge)will be held internally and
not resolwe to a logical value until a new value is sampled.

Syndironization is usedto avoid, or reducethe probability of, metastability. The strategy
utilized depends on the timing relationship of the clock and data signal(s), as detailed in the v e
categoriesabove. Many examplesof this can be found in the literature [12] [16] [17]. In general,the
more that is known about the relationship betweentwo signals,the easierit is to synchronize those
signals.

Metastable output values are generally in the logically unde ned region and can result
in error propagation through a syndcronous system. Due to its random nature, these errors are
infrequert, dicult to characterizeand hard to detect [15]. Accordingly, special care must be taken
to avoid metastability when sampling asyndronousinputs. It should also be noted that metastable

conditions can also occur due to pulse width violations of the clock signals[15] [18].

3.1.1 Background

Someof the earliest discussionsof system failures due to metastability were published in
the mid 1960's[19]. Sincethen this topic has beenextensively published making a comprehensie

survey of metastability literature challenging. Accordingly, this is outside the scope of this thesis,

CHAPTER 3. SYNCHRONIZATION 17

and instead a brief overview of someimportant literature in this areawill be given. Much of the
pioneering work to analyze metastability was donein the 1970's. Molnar and Chaney recordedand
discussedanomalous ip- op responsesto logically unde ned input conditions [20]. Pedoucek [15]
attempted to addressthe issue of predicting and modeling a device's metastability characteristics
and also discussedtechniques for reducing the probability of syndronization failure. Hurtado and
Elliot [14] addressedthe metastability of bistable devicesfrom a theoretical standpoint and showed
that bistable devicesmust have a metastable state, and that such devicescan be driven into this
region and remain there for an unbounded amourt of time. Marino [21] deweloped a generalized
model for metastability in digital systemsand demonstratedthe unavoidability of metastable opera-
tion when using fully asyndironousinputs to bistable devices. Hohl et al. [22] looked into predicting
the probabilities of syndronization failure basedon simulation and theoretical analysis. Flanna-
gan[23] investigatedhow to optimize CMOS circuits for synchronization performance. Horstmann et
al. [18] researtied synchronization issuesin custom digital CMOS ASIC designs,including proposing
ways to improve reliabilit y of suc cells. Portmann and Meng [24], consideredthe e ects of bu ering,
technology scaling, and power supply on metastability characteristics. They also shov simulation
methods for approximating metastability device parameters. Jex and Dike [25] developed a high-
performance, BINMOS latch with good metastability resolution characteristics. They also give an
overview of architecture techniques for reducing the probability of failure, and a straightforward
simulation technique for determining a syndironizer's parameter. Dike and Burton [26] built upon
these ndings and also consideredthe e ect of Miller capacitanceand thermal noise on metastabil-
ity characteristics. Ko and Balsara [27] simulated, measuredand compared ip- op metastability
parameters of six ip- op architectures using the method of Portmann and Meng [24]. Kinniment
et al. [28], develop a more complex model for estimating MTBF and further investigate the e ects
of thermal noise on metastable behavior. Semiat and Ginosar [29] implemented seeral syndcro-
nizer architectures on a programmable logic device, took measuremets to determine metastability
characteristics and comparedthe various architectures.

Solutions to remove the metastability problem have been published, but many have limi-

tations [30] and canresult in circuit failures if not utilized properly [12] [13].

3.1.2 Basic failure model

In theory, a devicecanremain in an intermediate metastable state for an in nite amourt of

time. However, in practice the circuit resolvesto a valid state after somenon-deterministic period.

CHAPTER 3. SYNCHRONIZATION 18

tr esponse_FF

(time)

New Data New Data
Latched 1 Not Latched

Normal !
response times :

<«

i » (time)

t hold

'setup, T tmeta
Clock Edge
Arrival

I
|
|
|
|
|
|
|
|
|
|

Critical Window

Figure 3.1: Generalized ip-op responsetime versusdata arrival time with referenceto a clock
edgearrival [11] [24]

Figure 3.1 shows the approximate relationship between input event transitions and the resulting
ip- op resolution time. A useful and prevalent approximation found in the literature for modeling
the averagefailure rate due to metastability is shavn in Equation 3.1 [11].

elr=

(MeanTime BetweenFailures) MTBF = ——
To fe fi

(3.1)

The variablesin Equation 3.1 are de ned as follows: f; is the clock frequency f; is the input data
evert frequency and t; is the allowed settling time before sampling. The remaining two parameters

and Tp are device dependent, and needto be experimentally determined [11]. The parameter

is the exponertial time constart of the metastability decay rate, and is sometimescalled the
metastability time constart [25]. The Ty parameter is the asymptotic width of the time aperture in
which the device can enter the metastable state, normalized to a responsetime of zero[25]. Since
no real device has a zero responsetime, the To parameter has no practical meaning, and is simply

a mathematical characterization of the device'ssusceptibility to entering the metastable state.

3.1.3 Final remarks

Metastability is di cult to model and measure. This is primarily causedby the fact that
true metastable events are probabilistic in nature, making them hard to quantize and capture.
Becauseof this, metastability doesnot exist in RTL or logic simulations, and it is di cult to model

in numerical circuit simulators becausemetastableevents are normally extremely rare and extremely

CHAPTER 3. SYNCHRONIZATION 19

small time stepsare needed,requiring high numerical precision. In order to measuremetastability
parameters,special hardware and simulator test circuits must be constructed [26]. In addition, recen
results suggestthat device speci ¢ metastability parameterscan vary over operating conditions [2§]
making it more elusive and di cult to predict. Even when hardware is available, metastability is
dicult to test and measurebecauseof its intermittent and rare occurrencein normally-designed

circuits.

3.2 Synchronization Strategies for Async hronous Inputs

In the caseof a fully asyndironous input, no information is available regarding timing of
signals, making synchronization the most di cult. ~ Solutions to syndironize asyndironous signals

fall into one of two categories:increasingtime for resolution and pausing the clock [11].

3.2.1 Increasing metastabilit y resolution time

The most prevalent model for the probability of a failure due to metastability in a bistable

elemen is an exponertially decaying function [11].

T, o
P(ts > t;) = ?0 e - (3.2)

This model is showvn in Equation 3.2, where t, is the bounded time window allotted for resolving
an intermediate output value and ts is the actual time required for the signal to resolve. The two
device parameters,tg and , are introduced in section 3.1.2. Accordingly, increasingthe resolution
window decreaseshe probability of syndironization failure exponertially. This equation can be
extended to estimate the Mean Time Between Failures as given in Equation 3.1. Syndironization
failure generally meansthat a syndironizer cannot produce a stable logical output by the time the
systemusesits output. The key result from both of theseequationsis that increasingthe resolution
time can greatly improve the ability of a syndronizer to avoid failures.

The most basic form of synchronizer in this category is the two ip- op synchronizer [12].
Extensions of this idea are numerous, including pipeline synchronization [31], where more memory
elemerns are placedin seriesto further increasethe resolution window. Taking the most basic case
of one syndchronizing elemer, the MTBF formula can be calculated from Equation 3.1. The form
of the equation remains the same,the only variable directly a ected is the allowed resolution time
(t;). For the single elemen synchronizer, t; can be determined by Equation 3.3, where Tk is the

clock period, ts s is the propagation delay plus setup time of the sampling elemert, and tqgic is the

CHAPTER 3. SYNCHRONIZATION 20

Synchronizer

Async Input Sync Output

> 2 |- N

Y
[EnY

Clock

Figure 3.2: An N elemern chain synchronizer circuit

delay of any logic beforethe next memory device.
tr = Tak tes tiogic (3.3

This equation can be generalizedto calculatet, for a pipelined synchronizer of N elemeris
asshawn in in Figure 3.2. From Equation 3.3, a generalizedequation for determining the resolution
time for this setup can be deweloped. In this case,the memory elemers will be assumedto be
ip- ops sincethey are commonly used as the sampling elemens in syndironizers. If N ip- ops
are chained together, the syndironizer will now have roughly N clock periods to resole possible
metastable evernts. With the assumption that the ip-ops are directly tied together, tjqgic will
equal zero for all but the last memory elemen. Therefore, only one tjogic must be subtracted.
The propagation delay and setup time for eac of the N ip- ops must also be subtracted from the
resolutiontime. The result is showvn in Equation 3.4. In most systems,the output of the synchronizer
is generally assumedto be available after only a t;; delay, sothe remainder of the cycle can be fully
utilized for other logic. In this form, tiogic + ti¢ is equivalent to one clock cycle (Tgk), thereby
reducing Equation 3.4to the oneshawn in 3.5. The primary disadvantageto this setupisthat N 1

additional cyclesof latency are added even when no metastability occurs.

tr (N) N (Tak tif) tiogic (3.4)

tr (N) (N 1) (Tak 1) (3.5)

There many possiblemethods for increasingthe resolution time. An alternativ e to pipelin-
ing ip-ops in seriesis to usesa divided clock, which also reducesf. and f4. This method gives
a better t, for the sameamount of delay, becauseonly one t;; is subtracted instead of N tes.
Howewer, it reducesthroughput in addition to the increasedlatency. Another method, called a
parallel synchronizer [25], usesalternately enabled parallel ip-ops. Each ip-op is clocked at
a slower rate, but on any given clock cycle only one of the ip-ops is supplying the output and

only one is sampling the current input. The remaining ip- ops are resolving any metastability

CHAPTER 3. SYNCHRONIZATION 21

that occurred at their respective sampling time. The output is multiplexed to choosethe currently
enabledoutput. This results in a larger t; than pipelining without the reducedthroughput of the
divided clock method. Howewer, it requires more hardware and is more complex becauseit requires
properly timed enable signals.

The generaltrade-o for these schemesis increasedarea and/or latency in exchangefor a
lower meantime betweenfailures. It should also be noted that these schemesdo not eliminate the

probability of a metastable evert; they only reduceit.

Metastable imm une synchronizers

In the above examples,a xed window is given for the metastability to resolwe before the
data is sampled. An alternativ e approad is to isolate the metastability within the synchronization
module and then allow asmuch time asnecessaryfor the metastability to resolve [32]. This prevents
indeterminate valuesfrom propagating past the syndronization module. This type of synchronizer
doesnot provide the new stable output any sooner, nor doesit provide a better de ned binary value
than a non-immune synchronizer [25]. In fact, due to the additional circuitry, these syncronizers
have extra loading and delay, soit usually takesa longer period of time to resolve than a simple non-
immune synchronizer [25). An additional concernis the non-deterministic delay that is introduced

into the system.

3.2.2 Pausing the clock

The secondcategory of solutions uses pausible clocks clocks{also called stopmble clocks
or stretchableclocks{to avoid metastability. In one variation of this technique, an arbiter circuit
decides(usually with a mutually exclusive elemen) the precedenceof a local clock edgeor data
evert occurring in the critical window. The technique does not prevent metastability, but isolates
metastability to the arbiter circuit. During the arbitration period, the sampling clock is pauseduntil
the metastability resolves. Pechoucek [15] and Chapiro [4] and were someof the earlier preseriers
of this technique, and many have sinceextendedthis idea. Yun and Dooply [33], developed pausible
clock cortrol circuits, which controlled asyndronous wrapper logic and used arbitration to avoid
simultaneous data and clock evernts. Muttersbach et al. [34] built upon this idea, but aimed for a
more scalableand portable design methodology by utilizing a di erent implemertation. Moore et
al. [35] dewveloped a similar implemertation, but used arbitration to avoid unnecessarypausing in

order to increasecommunication bandwidth by reducing latency. Thesetechniques use passiwe I/O

CHAPTER 3. SYNCHRONIZATION 22

ports, which allow the asyncronous data module to corntrol the ow of data. In thesesctemesl/O
operations must be mutually exclusive to avoid con icts.

An alternativ e is to usea direct communication scheme. This removesthe need for arbi-
tration in the clock oscillator, by only allowing the synchronous module to cortrol communications.
Bormann and Chueng [36] wrapped syndhronous modules with asyndronous interface modules uti-
lizing stretchable clocks with a direct communication scheme. Myer [37] used a similar schemein
interfacing asyndironous logic into a synchronous pipeline. Recerly, Kesselset al. [38], proposeda
clock syndhronization style that openedup the ring oscillators and directly syncironized the clocks.
The main advantage of direct communication is that it does not require arbitration in the clock
oscillator. Howevwer, arbitration may still be required when there are multiple 1/0O ports. Arbitra-
tion free synchronization hasthe limitation that when the syndronous block requiresdata it must
pauseand remain pauseduntil the requestis granted. This can lead to non-deterministic delays in
complex systems. Additionally , no computation can be performed during this period sincethe clock
is paused,potentially reducing system performance.

While the exact implementations and clock pausing details vary, the main benet of using
pausible clocks over the previous sthemesis that it can reduce the probability of syndironization
failure to zero. Howewver, thesesolutions alsorequire that eady module have a locally generatedclock
that canbelocally cortrolled. Also, in casesvherearbiters are usedto resolve asyndironouscon icts,
the systemmust be able to tolerate non-deterministic delays, sincethe time taken for arbitration is
unpredictable and unbounded. In general,when the clock is pausedthe ertire systemis frozen and
must wait for arbitration to complete before any work can be done. This becomeseven more of a
factor when interfacing to multiple asyndronous signals. Not only are more advanced arbitration
schemesrequired, but ead signal can causea conict. This results in increasedarbitration time as
the number of inputs grows. Care also must be taken to avoid system deadlock when modules are
pausingtheir clocks. An additional concernis the di cult y in pausingthe clock on the correct cycle

in applications that have large syncironous blocks with complex clock bu ering networks [39] [40].

3.3 Synchronizing Multi-Bit Words

There are potential problemssampling a multi-bit word using the syndironization methods
that have xed resolution time windows (sec. 3.2.1). This is true even without considering inter-
mediate metastable output values. This results from real systemshaving varying amourts of delay

per wire and the unpredictability of the logical result when timing constraints are not met on the

CHAPTER 3. SYNCHRONIZATION 23

Sampled Critical Sampled
Value at tO Window Vaueattl
(1] b3 T\ d
1 b2 1 0 ?
1| m T \0 ?
1 b0 1\ 0 ?

ReceiveClk _/~— \ [
0] b3___/ T 1 1
Ol b2 0 0 0
O] b1 / 1 1 1
0| bo 0 1 ?
TransmitClk ____/_/_/\
t0 t1

Figure 3.3: Sampling of a multi-bit transition word and a single-bit transition word

sampling device. The consequencas that it will be possibleto sampledi erent signalsat dierent
times. This caseis illustrated in Figure 3.3 wheretwo asyncronouswords are sampledby a clocked
module.

The top example shows the worst casewhere all bits transition within the critical window
and every bit could independertly take on the old value or the newvalue|after a su cien t metasta-
bilit y resolution period. In the bottom example, only one bit of the word transitions in the critical
window and thus only one bit in the word has an unpredictable resolution value. Note that one
resolution value (0) resultsin the previousword and the other resolution value (1) results in the new
word|no erroneouswords are possible!

It isimportant to further note that this property holds regardlessof the relative frequencies
of the read and write clocks. In the lower example, the \old" value of the receiwe register is 0000
and while the values change more than oncebefore being read a secondtime, only one bit changes
during the critical window and regardlessof how the unstable bit resolwes, a valid word will always
be read. Details of how this property is integrated within a dual-clock FIFO designwill be covered
in Chapter 4.

It should be noted that whenthe timing relationship betweenthe two communicating units
is not asyndronous, alternativ e technigues can be employed to synchronize multi-bit vectors [12].
Oftentimes, such as in the mesahronous case, these techniques can result in the probability of

metastability going to zero.

24

Chapter 4

Dual-Clo ck FIF O Arc hitecture

Interfacesthat require rate matching betweentheir read and write sidesand are clocked
by unrelated clocks, require the use of a dual-clock FIF O. In somecasesthe burst patterns of both
producer and consumerare well characterized and bounded and the special techniques described in
this sectionare not required, but this is not the generalcase. The focus of this sectionis on a exible
dual-clock FIF O architecture which supports data transfer acrosstwo clock domainswith completely
arbitrary phase and frequency relationships. Additionally, both clocks can change dynamically
including dynamic frequency scaling and inde nite pausing. More speci ¢ implementation details

for the physical hardware designof a dual-clock FIF O are discussedin Chapter 5.

4.1 Background

FIFO architectures nd frequert usein situations where data must be passedbetween
unsyndironized clock domains. Dally and Poulton [12] and Balch [6] present high-level views of the
structure, but details of dual-clock FIFO designare lacking in the literature. Siezwic [31] preseris
alinear FIF O architecture for data syndironization known as pipeline syncronization. Becausethe
architecture is linear, the limitations preseried in section 2.1 regarding linear FIF Os apply.

Fully asyndironous FIF Os are common in the literature, but these designsdo not utilize
clocks, and therefore are di cult to apply in the caseof synchronizing data betweenclock domains.
Examples include fully asyndironous linear [41] and square [42] FIFOs, and investigations into
improving the asyndironous cortrol [9] of these FIFOs. An alternative FIF O architecture for use
in limited dual-clock applications is preserted by Chelceaand Nowick [43]. While the architecture

robustly transfers data acrossunequal clock domains, the rate di erence must be known a priori

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 25

to guarartee proper operation. Accordingly, dynamic frequency scaling is not supported. The
architecture also presers scalability challengesdue to the high fan-out of internal control signals.
Additionally , it should be noted that the two ip-op control syndironizer in the design does not
guarantee complete avoidance of failure, especially at high-frequencies. A nal referencethat is a
more informal description of an approac to designing a FIF O similar to the one preseried here
is given by Cummings [44]. This paper outlines one approac to dual-clock FIFO design with
an emphasison writing synthesizable HDL for this type of FIFO. Many background details on
FIF Os and syndironization are not covered and the conceptsof resene space,pipelining and other

techniques required for integration into real hardware are not covered.

4.2 Arc hitecture Detalls

A block diagram of the proposedcircular, dual-clock FIF O implementation is shown in Fig-
ure 4.1. The given dual-clock FIFO syndchronizesdata through its memory core and write and read
circuitry operatein di erent clock domains. The syndronization task then involves passingcortrol
information between domains. This meansthat no data manipulation is required and bits within
ead data word are guararteed to be uniformly syndironized. The primary challengein designinga
dual-clock FIF O comparedto a single-clack FIF O is deciding what information to transmit between
clock domains and how to syndronize that data. Otherwise, the architecture is very similar to its
single-clack counter-part. The fact that ead side of the FIFO is its own syndironously designed
module makes the dual-clock architecture attractiv e becauseits logical design and veri cation is

more straightforward than oneinvolving fully asyndronous circuits.

421 Address and control information

Clearly, the key issuewith a dual-clock FIFO is determining what cortrol information to
passand how to passit betweenunrelated clock domains. The method chosenhereis to passread
and write addresspointers. The pointers are increasedto log,(N) + 1 bits to allow straightforward
useof all N memory words. This still doesnot solve the problem of safelytransferring those vectors
acrossclock domains. As discussedn section3.2, there are two generalcategoriesof synchronization
methods, either pausingthe clock or increasingthe metastability resolution time. Many applications
of interest do not allow local clock pausing, sowe excludepausible clock solutions asa solution in this
case. This doesnot presen a problem aswe can reducethe probability of metastability arbitrarily

low by extending the time resolution window as discussedin section 3.2.1. Howewer, as noted in

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 26

Clocked by write clock Clocked by read clock
i ‘ Data_out
Data in m | Dataln . DaaOut m i
Wr_vaid :
= { »{Wr En | Rd En|e enable
Increment
Binary Incrementer : Binary Incrementer
address out SRAM Address Increment
Full Full mxn Q
¢ Logic ¢ :
A : Control Rld_req
Wr_ptr Rd_ptr Logic
| Wr Addr Rd Addr |-
A
Y
wr hoid| © Gray to Syne Delay for Binary to Empty
= Adder - | Binay |-a— 4—6 S— memory read |«— Gray |est— -
(MSB) Converter latency Converter
+ v \

Converter write |atency

Binary to Delay for Sync Gray to .
Gray —p»| memory —S ! s—p - Binay [—| Equivalence
i Converter

Figure 4.1: Detailed diagram of dual-clock FIF O architecture

section 3.3, multi-bit data must allow at most one bit transition between data words for reliable
transmission. It is most corveniert and natural to perform arithmetic manipulations on binary
data. Unfortunately, during normal operation of the FIFO, the addresspointers will frequertly
increment, causinga binary encaded value to have an arbitrary|often greaterthan one|n umber of
bit transitions. For this reason,addressesare transformed to Gray code (details in sec. 5.4) before
being passedacrossthe clock boundary to prevent multi-bit transition failures. The addressesare
converted badk to binary for further processingoncethey are synchronized into the other domain.
As discussedin section 3.3, even though Gray coded values are used and the probability
of syndchronizaton failures (i.e., the propagation of logically unde ned values past the synchronizer
module) are made extremely low, the absolute value of the sampledsignal still cannot be predicted
with certainty. As shown in Figure 3.3, one of the bit valuesis still potentially unknown. However,
it is certain that the the vector will either represett the old value or the new value. The dual-clock
FIF O architecture naturally solvesany conict that this may normally presen. In this architecture,
the cortrol vector represetts the location of the addresspointer and is usedby the other side of the
FIFO. If the sampled addressresolvesto the new value there is obviously no problem. The case
where the old value is retained also does not preseri a problem becauseit will be interpreted by
the side receiving the addressas the casewhere the pointer has remained in its old location and
no actions (i.e., readsor writes) have occurred. While this potentially adds latency to the system,

it will not causeany data to be overwritten or incorrectly read. Evertually|lik ely on the next

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 27

sampling edge|an updated value will be received. Accordingly, barring a synchronization failure
this method of passingdata betweendomainsis extremely robust.

Reducing the probability of syndironization failure to an acceptable level needsto be
addressedwithin the syndironizer. The implementation of the addresssyndironization circuit is
exible and the exact design depends on the requiremerts for a speci c application. For the case
of clocks with arbitrary phaseand frequency a robust syndhronization technique is required. The
simplest su cien t syncironizer uses multiple seriesregisters. If reasonably metastable-resistart
registersare used, the probability of failure can be made extremely small with 2 or 3 seriesregisters
[11]. For increased exibilit y, this architecture allows seweral parametersto be made con gurable,
including the choice of synchronization circuitjwhic h determinesthe metastability resolution time.
This allows the latency to be modi ed independert of the frequency at which ead clock domain
is being operated, which in turn enablesan optimal balance between latency and syndronization
failure without redesigningthe circuit. Further details of the synchronizer used here are discussed
in section5.3.

An additional concernwhen sendingaddressdata to the read sideis any latency assaiated
with the memory core. This preverts the read side from reading data out of a memory location
beforeit hasbeenwritten. Likewiseit preverts the write side from writing data beforeit has been
read. Any necessarydelay can be inserted by adding registersjust before the data passesinto the

syndironizer circuit.

4.2.2 Reserve space

Resene spaceis also utilized in this designto accourt for the transmit delay in both
directions and the write logic of the data producer. A dierence module is usedto determine the
current spaceleft in the FIF O by determining the distance betweenthe two pointers. This di erence
is then comparedwith the reservevalue. If the di erence is lessthan or equalto the reserne amourt,
it is clearthat the FIF O must signal the producerto stop sendingdata. Any data left in the pipeline
betweenthe producer and the FIF O is safely written to the resene spacepreverting over ow. As
discussedn section2.2.2,including resene spacereducesthe e ectiv e sizeof the FIFO. The resene
spacemay not actually contain valid data even if the FIF O is not requesting data. Additional logic
can be added to intelligently requestsmall bursts of data to utilize someof the resene spacewhen
it is unused. Howewer, this increasesthe complexity of the FIFO in terms of designtime and area

and also increasesthe potential for an over ow condition if not designedcorrectly.

CHAPTER 4. DUAL-CLOCK FIFO ARCHITECTURE 28

4.2.3 Comm unication interface

Details on the interface design choices for circular FIFOs and badkground on two-line
signalling are preseried in section 2.2.4. As discussedabove, the dual-clock FIFO presened here
utilizes resene spaceon the write side of the FIF O. To increaseproducer e ciency , the write channel
should adhereto the corvertion where the FIFO write interface cortrol signal is the active port.
This is a consequence®f the latency that exists betweenthe producer and the consumer. In general,
an active port waits for a responsefrom the passiwe port to determine its next step. In this case,
the upstream producer is multiple clock cyclesaway from the FIF O write logic. The write logic can
directly determine when the FIFO cannot accept any more data. If the FIFO's port is active, it
can immediately transmit this information on its cortrol signal (wr_hold) and the latency it takes
the producer to receiwe this indicationjJand any data already in transit to the FIFOlis stored in
the resene space. If the producer were chosento be the active port, every time it wanted to write
to the FIFO it would have to stall. The stall length would be equal to \r eserve" cycles, becausea
write would require the write cortrol signal (wr_valid) to be transmitted to the FIFO, the FIFO to
processthe write attempt and then sendbadk a reply. As discussedin section 2.2.2, eat of these
can potentially take sewral cycles. In someapplications, this stall delay may be acceptable,but in
general, processingmoduleswant to be asactive as possible. Accordingly, in this designsomeFIF O
spaceis forfeited for higher activity in the producer.

On the read side, choosingoneactive port over the other hasno clearadvantage. Therefore,
it will be determined by the target application. In one scenario,the FIF O read cortrol output signal
(empty) is the active port. In this case,it will always indicate if the FIF O is empty and the consumer
should not requestdata on its cortrol line (rd_reques)) until the FIFO hasindicated that it is not
empty. Alternativ ely, if the consumeris the active port, it can request data at anytime and the

FIF O will respond by signalling whether the requestwas granted using its control line (empty).

29

Chapter 5

Hardw are Implemen tation

This chapter coversthe circuit level designand layout of a dual-clock FIF O module usingthe
architecture introducedin Chapter 4. The primary hardware units that are required for the design
are a memory array, a syndronization module, a binary incremerter, Gray/binary cornverters, an
adder for determining the \In Resene" condition, a comparator, and interface/control logic. These
modules are elaborated upon and discussedbelow. The target application (see Sec.1.1.1) drove

most of the nal implementation choicesdetailed in this chapter.

5.1 Design and Verication Process

The design processfor the FIFO consistedof rst creating a behavioral model in Verilog
that was integrated into a simpli ed, single-cyclemodel of the ASAP system. NC-Verilog [45] was
used for logical veri cation of the FIFO and the target system. After logical veri cation, a cycle
accurate, pipelined version of the FIF O was created. This was integrated into the secondversion of
the AsAP system, which was also pipelined and cycle accurate. Once the logical operation of the
pipelined FIF O wasveri ed and tested within the system,the nal hardware designwas performed.
Structurally accurate models of the hardware modules were created in Verilog and tested to ensure
proper logical operation. At this point, circuit design began with a 0.18 m standard CMOS
processas the target technology. Accordingly, all area estimates preseried in this chapter assume
a 0.18 m process. The circuits were then layed out in MAGIC [46] and extracted for testing,
with a parasitic capacitancethreshold of 0.1 fF. HSPICE [47] simulations wererun on the extracted
layout to verify proper circuit operation over supply and temperature and also estimate performance

numbers. IRSIM [48] was also usedon the extracted layout to verify proper logical operation of the

CHAPTER 5. HARDWARE IMPLEMENT ATION 30

modules.

The standard test conditions for reported performancenumbersin this Section are, unless
otherwise speci ed, a 1.8 Volt supply, typical NMOS and PMOS devicesand an operating tem-
perature of 40 C. To verify low-voltage operation, the circuits were tested with a supply voltage
of 1 V. Output loading for testing individual modules was set to a default of four minimum sized
inverter input capacitances. This was chosenbecausethis represents a fan-out of four (FO4) [2]
load for a minimum sizeddriver. We sizedthe PMOS to achieve a balancedrise and fall time for
our minimum inverters, which results in an NMOS width of 5 and a PMOS width of 13 . The
default load capacitanceis then approximately 15 fF for a 0.18 m technology. In somecases,suc
asin the memory, more detailed capacitive loading estimateswere madeto more accurately predict
performancenumbers and verify proper timing operation.

As mertioned, the overall designgoal is to be able to operate at a high-speed. The rough
speed target for the system under typical conditions is in the high hundreds of megahertz. The
baselinegoal is to guarartee operation with a clock period of lessthan 2 ns (frequency > 500 Mhz).
However, ideally the module will operate at higher speeds,so options to increaseperformancewere
generally taken, solong asthe designtime impact was not too large. The total ip- op time|clo ck
to output time plus setup time|for the D Flip- op usedin this design(Fig. 5.10) is approximately
250 ps under typical conditions and a minimum FO04 load. This leavesthe remaining time for all

other logic in one pipeline stage.

5.2 Memory Design

As discussedn Section2.2 the FIF O requiresa memory coreto bu er the elemers asthey
passthrough the module. From the architecture standpoint this is a drop-in module, so any type
of memory array can be utilized. For this designa 16-bit by 32 entry memory array is required. To
balancedensity complexity and robustness,a Static Random AccessMemory (SRAM) type memory
was chosen. SRAM architectures and design techniques are extensiwe, including optimizations for
area, power and speed[49]. For this design,the key requiremert wasto make the memory robust
and, secondly try to balancethe remaining parameters. It should also be noted that the SRAM
preseried here was designedsud that the sub-cellsand general architecture could be re-used for
other memorieswithin AsAP processors.Accordingly, not all the designchoiceswere made ertirely

with the FIFO SRAM speci cs in mind.

CHAPTER 5. HARDWARE IMPLEMENT ATION 31

Vdd

})Eechrg_n

| writebitline read bitline
! '

! SRAM Cell [}

Vi !
m8
—C{ m7
write_nwordline |
0 mé
|
m5
m2

. ﬁél:j T
I

read wordline

S
write wordline T

Figure 5.1: Basic ten transistor SRAM cell

5.2.1 SRAM cell

This SRAM core utilizes a ten transistor SRAM cell. A transistor level schematic can be
seenin Figure 5.1. Sizing for the transistors is showvn in Table 5.1. The full transmission gate
(m1 and m2) controls writes into the cell and increasesthe speed and robustnessof the circuit.
Additionally , using a tri-state inverter (m5{m8) for the feedbad in the cell makeswrites faster and
more reliable. Device m9 is included to reducethe capacitive coupling of the read cortrol line into
one of the primary storage nodes (drains of m3 and m4) and also to isolate that node to prevent
current feedingbadk into the cell. Both of theseewerts can potentially causethe cellto ip its value
during aread. It wasdetermined from circuit simulations that the amount of voltage drop occurring
in the cell without the isolation device wastoo high, sothe extra device (m9) was added. Overall,
thesemodi cations increasethe cell's robustness,which is a top designgoal. The trade-o is alarger
cell size.

In the rst passof the memory design, the read bitline was static and an inverter within
the cell drove it in both high and low through a full transmission gate. After simulating the critical
path of this architecture, it wasdetermined that without making the PMOS devicesvery large they

were too slow to statically pull up the bitline during a read. To alleviate the problem, the read

CHAPTER 5. HARDWARE IMPLEMENT ATION 32

Device | Transistor widths ()
ml
m2
m3
m4
m5
m6
m7
m8
m9
ml10
mp 24

=N =
BN ooan

Table 5.1: Device sizing for SRAM cell of Figure 5.1 (= 0.09 m for a0.18 m process)

bitline was made dynamic, soit is pulled-up by device mp during the pre-charge phase. Details
of the pre-charge signal generation are shown later. This allows the removal of two large PMOS
devicesfrom the cell reducing cell area. It also removed 32 large P-di usions from the eadh read
bitline and replacedthem with only one from the pull-up device (mp). This cut the total di usion
capacitance on the bitline by roughly one half. Assuming a ft y percert bitline toggle rate, the
power consumption would not be negatively impacted by using a pre-charged bitline, and should
even improve since the overall bitline capacitancewas reduced. Additionally , the change achieves
the desiredresult of increasingthe overall read accessspeedof the SRAM.

Figure 5.2 shaws the layout for the SRAM cell and also how the cell ts next to its
neighbor cells when the cells are tiled out to form the nal memory. Each SRAM cell occupies

32.6 m? (5.04 mtall by 6.48 m wide).

5.2.2 Arc hitecture
Wrrite circuitry

Once the SRAM cell is designed,the cortrol logic for generating the write wordline, read
wordline and pre-charge signalsneedsto be designed. This logic is shown in Figure 5.3 For the write
logic, the rst stage consistsof a set of predecalers to better distribute loading within the logic
network and thereby speedup cortrol signal generation. Even with the logic network optimized and
broken up into stageswith high current drive capabilities, it wasstill di cult to generatea transition
on the actual wordlines within a small propagation delay of the inputs changing. To increasethe
overall robustness,the clock signal was usedto gate the two fastest predecale signals. This causes

the wordlines to unassertmore closelyin time|in terms of gate delays|to the active clock edge.

CHAPTER 5. HARDWARE IMPLEMENT ATION 33

Figure 5.2: SRAM cell layout (BL = bitline , WL = wordline)

This keepsevents ordered properly and helps prevert glitching on the wordlines. Evert ordering is
an issue, becausethe write bitline can toggle soon after a clock edge, whereasit takeslonger for
the last write wordline to unassertand the next one to assert. If the bitlines begin to toggle too
early, the new value can overwrite the value that was just written to the previously active row of
SRAM cells. To further assistwith ordering everts, the write data is re-registeredby a positive edge-
triggered ip-op that is placed after the standard negative edge-triggered ip-ip. This prevents
early transitions on the bitlines, and allows enoughtime for the wordlines to properly settle to their
new values. The waveforms for a writing a \0" and writing a\1" into an SRAM cell are shavn in

Figures 5.4 and 5.5 respectively.

CHAPTER 5. HARDWARE IMPLEMENT ATION 34

clock

wr_data write hitlines

write31

] write30_n

) write30

[T

write wordlines

% writel_n

writel

% writed_n
write

predecode
lines f ;
clock
3 2 1 0 3 2 1 0
wr_enable
;PD—V En 2:4 Decoder F»En 2:4 Decoder
y y addr[4]
addr{2:1] addr[3:2]
wr_address
5

Figure 5.3: SRAM write control signal generation

CHAPTER 5. HARDWARE IMPLEMENT ATION

18 o

17
16
] /
15 [
] /
14 I
] |
13 1
] |
12
11
1000m é

90om

500m 7;
400m é
300m é

100m

- N7 T
/ Bl
7/ e \
/ .
. \
,
) \\ clk
.
’ ll/
'
' |
.
write bitline |
Lo
-
]
H
)
I: ,I SRAM cell
i internal
'i’ storage node
"
1

0" is written into cell

6n
Time (lin) (TIME)

Figure 5.4: Simulation waveformsfor writing a\0" to an SRAM cell

1000m

90om

Voltages (in)

80om é
7o0m
600m é
500m é
aoom
300m é
200m

100m

0] —~—

write bitline; !

SRAM cell
internal

storage node

! 1 wordline
e

i

1" is written into cell

Time (lin) (TIME)

Figure 5.5: Simulation waveformsfor writing a\1" to an SRAM cell

35

CHAPTER 5. HARDWARE IMPLEMENT ATION

3 2 1 0 3 2 1 0
rd_enable
— En 2:4 Decoder F»En 2:4 Decoder

3

1
D
H 5 read wordlines
L
=D
1
=D
prechrg_n
predecode
lines

clock
A 'y addr[4]
addr[2:1] addr[3:2]
rd_address
5
Figure 5.6: SRAM read cortrol signal generation
5 — =T N) N =
18 o 1 = N o \
1 \ / \ Pl \
17]] Voo \
] \ / \ ! | \
E) / h—d | \
e | / Wi : \
E ook ,,' \‘l/ e \
o I i S VAR
14 ! : i\ : |
.)
E] ! A i \
] : | i \read pitine | |
13 ! H i ‘\l/ H |
] | | i ! |
] H 1 : y }
1.2 o 1 T 1 \ H |
9 1 1 . 1
1 ' i i \ \ SRAM |
B H 1 B \ H read out
11 ! ' [! |
] '. i i \ : register |
sooom = | T R t
1 | H wordline] \ \ |
z 1 : i i \ i |
= 9oom 7 H T H \ H |
g] ' ! ! ! I
g] 1 | i \ 1 |
S soom o) h i b i |
E } ! i \ i |
] ! ! \
700m i 1 i \‘ H |
] \ H i \ | |
] \ ! ! |
600m K ! 1 \\ 1 |
] ' i i \ i |
] H 1 \ 1
3 1 ' I ' |
500m 1 i f v T
] ' ; ! Vo |
3 | | i 1 : \
a00m t { i \ 1 |
] ' | i \ | |
4 v 1 .) \
300m | | i A |
] 1 1 H \ 1
1 Y i i \ L |
200m | i ! N\)
3 iy ! ! \ v \ /
| \ 1 N\
200m " ! i Ny N\
o] R ! ; RSN
] N read "0"
-100m
Time (lin) (TIME)

Figure 5.7: Simulation waveformsfor reading a\0" from an SRAM cell

36

CHAPTER 5. HARDWARE IMPLEMENT ATION 37

Voltages (lin)

pre-charge phase read "1"

T T T T T T
13.8n 14n 14.2n 14.4n 14.6n 14.8n
Time (lin) (TIME)

Figure 5.8: Simulation waveformsfor reading a\1" from an SRAM cell

Read circuitry

The read cortrol logic is shown in Figure 5.6 and is similar to the write control logic.
Predecalers are usedin the rst stage of logic followed by wordline driving logic. The primary
di erence on the read logic is that the clock gate signal enters directly into the wordline drivers.
This allows the read wordlines to toggle even more closelyin relation to the clock. It also generates
a pre-charge signal that has a more optimal timing relationship to the read wordline signals than
the clock signal itself. It is desirablefor power savings to avoid the situation where both the pull-up
transistor and a pull-down transistor (in the cell) are \on" at the sametime. If the clock signal
is used directly for the pre-charge signal, the time period where both devicesare \on" is on the
order of 400 ps. With the given topology there is a still a small period time|appro Xximately 150
ps|where the two signalsdo overlap. There are likely possibilities to further minimize this con ict,
howewver, due to designtime constraints this was deemedto be an acceptableamourt of overlap.
The waveformsfor a reading a\0" and reading a\1" from an SRAM cell are shovn in Figures 5.7
and 5.8 respectively. Weak PMOS keepersthat can be turned \on" and\o" with a con guration
bit are included in the design. These can be activated to compensate for the droop in the read

bitline whenthe pull-up deviceis\o" and no cellsare pulling the bitline down. This is particularly

CHAPTER 5. HARDWARE IMPLEMENT ATION 38

useful for very slow speedoperation or if the PMOS mobility is low after fabrication.

Performance

To more robustly test the nal layout of the SRAM, additional capacitive loading was
added into the extracted HSPICE circuits to better represen the large wire loads presered in the
memory. Additionally , low-supply voltage operation wasveri ed by running simulations at 1 V. The
circuit operatescorrectly with this low-voltage supply at speedsof up to 300 Mhz. The nal SRAM
memory core has approximately 30,500 m? of active areaand the smallestrectangleit occupiesis
approximately 35,000 m? (202 m tall by 175 m wide). Extracted simulation results indicate a

maximum frequency of 865 MHz with a 1.8V power supply.

5.3 Synchronizer Design

In FIFO designsutilizing unrelated clocks, asyndronousinputs must be properly syndcro-
nized. Generally, theseinputs are multi-bit vectors, however, as shavn in Chapter 4, this problem
can be reducedto a singlebit syndronization problem. As discussedn Chapter 3, the fundamental
choice in syndhronization strategy is either to use pausible clocks, or to allow enough resolution
time to reducethe probability of synchronization failure to an acceptablelevel. The application will
likely govern this decision. For this FIF O design, using pausible clocks at the interface was deemed
to be unacceptable, due to complexity issues,the non-deterministic delays it would causein the
system, and the fact that eadh domain had seweral incoming and outgoing interfaces, making proper
arbitration dicult. Once this was decided we chosea simple pipeline synchronizer (described in
Sec.3.2.1) for synchronizing the incoming addresspointers. In order to have reliabilit y control for
characterization purposes,the number of stagesin the syncdronizer is con gurable. Additionally,
sincethe target systemcan run at various frequencies,a con gurable length synchronizer decouples
the resolution time from the clock frequency This way at high frequencies,seeral stagescan be
usedto ensurereliability, but at lower frequenciesthe number of stagescan be reduced, while the
mean failure rate and total latency remain the same. The architecture for the syndironizer circuit
is shown in Figure 5.9. The unsynchronized path (Con g= 0) wasincluded for metastability testing
purposes.

Once the architecture is chosenthe actual syndronizing circuit needsto be designed.
Traditionally, a memory elemerjusually a ip-op or latchlis used for this task. The target

application for this project alsorequiresthat the designbe synthesizable. Accordingly, the amount

CHAPTER 5. HARDWARE IMPLEMENT ATION 39

AsynCInpUt " l
| 7 7 i Local

Y v \i Clock

Config 0 3 4
#

2
A
* Sync Output

Figure 5.9: Syndironizer elemert with con gurable metastability resolution time

phi phi_n

%

phi_n phi

phi_n

D
11 Invl 12
|>‘<| latchl_in half_latch_out % latch2_in

phi phi_n Q

phi_n phi

Clock w' w.
Figure 5.10: Schematic of negative edgetriggered syndhronizer ip- op with local clock bu ers

of non-standard library elemeris must be minimized. For this reason, and simplicity, we used a
standard D ip-op for the synchronizer, similar to the ip-op usedin the remainder of the target
system. For the custom layout target we were able to make sizing adjustments and measuremets
to the circuit in order to optimize and characterize its metastability performance. The ip- op
syndironizer circuit can be seenin Figure 5.10 along with its device sizesin Table 5.2.

When designinga synchronizer there are two device parametersthat needto be considered.
As described in Chapter 3 theseare the metastability time constart() and the normalized aperture
in which metastability canoccur (Tg). There hasbeensubstartial researt into the areaof improving
syndronizer performance,although there still appearsto be somedisagreemen about the best way
to design an optimized syndhronizing elemer. It is generally agreedupon that when designing a
syndironization ip-op it isimportant to keepthe time constart of the ip-op small. This results
in a faster resolution times, and, therefore, a higher propensity for avoiding resolution failures. In
order to have a small time constart, loading on the feedba&k loop of the bistable elemen needs
to be minimized. Additionally, sometypes of ip-ops, sud as dynamic ip-ops, have in nite

time constarts due to the lack of feedba&, making them poor syndironizers. The metastability

CHAPTER 5. HARDWARE IMPLEMENT ATION 40

NMOS width () | PMOS width ()
Invl 10 19
Inv2 5 5
Inv3 10 26
Inv4 5 10
Invh 8 14
Tril 5/5 5/5
Tri2 5/5 5/5
T1 5 8
T2 5 12

Table 5.2: Device Sizing for Flip- op Syndronizer of Figure 5.10. (= 0.09 m for a 0.18 m
process). For tri-state devicesthere are two devicesin seriesfor both the pull-up and pull-down.

time constart , introduced in Section 3.1, can be minimized in the samemanner. It has been
shown that the parameter is related to the gain-bandwidth product of the rst stagein the
ip-op [18] [24]. The relationship has been establishedwith equal to the inverse of the gain-
bandwidth product of the syndhronizer [25]. This meansthat ideal synchronizers have high current
drive (i.e., large transconductance (gn) values) and small node capacitances. Syncronizers using
bistable inverters have beenshown to yield better results than those constructed out of more complex
gates[28]. Basedon the gain-bandwidth requiremert, this makessense sinceinverters present less
loading and have higher gain than other typesof logic gates. Given a synchronizer topology utilizing
bistable inverters, as shown in Figure 5.10, it has been suggestedthat the optimum device width
ratio is 1:1(PMOS:NMOS) for maximizing the gain-bandwidth product of the syndironizer [23] [50].
Unfortunately, when consideringthe MTBF equation for a pipelined synchronizer (Eq. 3.1 and 3.4),
both andt appear in the exponert. While the specied ratio can improve gain-bandwidth,
it can increasethe propagation time of the ip-op, especially in technologieswith low PMOS
device mobilities. Accordingly, optimizing ertirely for gain-bandwidth is not necessarilythe best
approad. Additionally, there has been debate about the accuracy of the relationship between
gain-bandwidth and [51]. It has also beenshawn that in two-stage ip- ops|master-sla vel|the
syndironization task is left up to the rst stageofthe ip-op and often any metastability is isolated
to the internal nodesand only a delayed ip- op output responseis seen[18]. It is still possibleto
sample a metastable value at the output becausethe transition time is non-deterministic, making
it asyndironousto the next device. Howewer, it is lesslikely than if the output of the rst ip- op
stagewere usedbecausethat stage'soutput will sit at a logically unde ned state while the ip- op
resolvesany con icts.

When hardware is not available, it is usefulto usecircuit simulations to estimate metasta-

bilit y performance. Methods for using simulations to approximate metastability characteristics have

CHAPTER 5. HARDWARE IMPLEMENT ATION 41

been published [22] [24] [25], but simulations can be hard to cortrol [50]. Additionally, time steps
on the order of 0.1 ps or lessare required to make thesetypesof measuremets [28. Howewer, these
techniqueshave beenutilized to achieve reasonableapproximations to the nal hardware values[26].
Accordingly, it is still usefulto simulate these valuesto get a generalidea of failure rates prior to
committing a designto hardware.

The layout for the ip-op designin Figure 5.10 was extracted to include all parasitic
capacitancesgreater than 0.1 fF. Numerical circuit simulations in HSPICE were usedto estimate
metastability performance. Figure 5.11 shaws the simulation results from a setup time violation of
this ip- op. This wasaccomplishedby iterativ ely running simulations and shifting the D (data.in)
input transition until values were found that causedthe ip-op to behave incorrectly. In this
case,the input changeoccurs about 40 ps after the clock input (phi.in) transitions. The rst stage
is forced into a metastable state with both internal nodes (latchl.in and half_latch_out) sitting in
the logically unde ned region near Vpp =2. As noted above, while the rst stage of the ip-op is
resolving the input conict the output of the secondstageis being held, and is not forced into the
metastable state. This simulation was performedat 100 C and a Vpp of 1.62volts with a resolution
time of 0.01 ps. The simulation conditions were chosen becauseincreasing the temperature and
lowering the supply voltage increasesa devicessusceptibility to metastability [50] [24].

We chosethe simulation methods described by Jex and Dike [25] for estimating the metasta-
bility time constart , and we chose Portmann and Meng's [24] method for estimating To. Deter-
mining To by simulation is more di cult and lessaccuratethan [51]. Howewer, since appearsin
the exponert of the MTBF equation (3.1), and Ty doesnot, variations or inaccuraciesin have a
much greater e ect on the estimate than variations in Ty.

The method for determining by simulation consistsof using a voltage controlled switch
to force the internal nodes (latchl.in and half_latch_out in Fig. 5.10) into the metastable state.
This is accomplishedby rst shorting these nodestogether with a low resistance(0.001) switch.
The clock input is statically tied low to enablegatesT2 and Tril and disable T1 and Tri2. Even
though someof the deviceswill always be disabledin this simulation, they wereleft in to accurately
model the internal loading conditions. The switch was left closedfor 10 ns and then openedwith a
control voltage pulse. The \o " resistanceof the switch wassetto 100M . At this point numerical
simulator noisewill likely causethe nodesto drift apart, but a small power supply, on the order of 1

V, canbe addedin serieswith the switch to forcethe nodesapart [25). The time constart at which

the nodesdrift apart givesthe desiredapproximation for . By plotting the di erence betweenthe

CHAPTER 5. HARDWARE IMPLEMENT ATION

data_in

4 H i
] '
1000m H

HEN

|
v latchi_in H 1
'

R\

] hi_i
900m P

Voltages (lin)

800m

700m E

600m]

] latch2_in
500m

400m]

i

'

1 H !
300m }

200m E

100m

20n
Time (lin) (TIME)

Figure 5.11: Metastable evert of D ip-op in HSPICE circuit simulator

Test Condition To (ps) (ps)
Data transition high to low 600 -
Data transition low to high 720 -

Forced to metastable point and released

- 30.5

Table 5.3: Metastability parameters from HSPICE numerical simulator (test conditions = 100 C
and Vpop = 162V)

two nodeson a semilogplot the time constart can be found using Equation 5.1 [25].
t1 t
= 5.1
|Oge(V2=V1) ()
An example waveform set from an HSPICE simulation of this test can be seenin Figure 5.12. The
estimated worst case measuremen for the syncironizer design shown in Figure 5.10is listed in

Table 5.3.

In order to estimate Ty, iterativ e simulations were run on the syndironizer ip- op. Two
setsof simulations were run, onefor a data transition high to low and one for a data transition low
to high. The processconsistsof moving the data transition edgethrough the critical window of the
ip-op. The two piecesof information to be collectedfrom the simulation are, 1) the time di erence
betweenthe active clock edgeand the data transition (D) and, 2) the time di erence betweenthe

active edgeof the clock and the output (Q) transition. After a rst passthrough the critical window

42

CHAPTER 5. HARDWARE IMPLEMENT ATION 43

* calculation of dff tau (for mtbf estimates)

16 7 Vi
/

4 /

14

/
/ half_latch_out
{

!
!
17 7
/

12 7

D)

Voltages (i

800m 7
600m
latch1_in

400m

200m

T
10n
Time (lin) (TIME)
* calculation of dff tau (for mtbf estimates)

1] : -
Current X=1.0040e-08 i i
‘Current X=1.0080e-08

Current Y=1.8595e-01
L Current Y=6.4742e-01

100m] @

Result (log)

10m |

Differencef

im

100u |

T T
9.95n 10n 10.1n 10.15n

10.05n
Time (lin) (TIME)

Figure 5.12: Measuringthe parameter for syndironizer (T= 100 C and Vpp= 1.6 V)

with alarge increment size(100 ps), smaller windows are usedwith a smaller incremert size. The
focal point of the exerciseis the window where deep metastability occurs. This is de ned as the
regionwherethe clock to data output becomeson-deterministic, and is not simply a delayed version
of the correct output [25] (i.e., larger than normal clock{to{Q times). In HSPICE this region is the
areawherethe ip-op output resolution direction is governed by numerical noisein the simulator,
and no longer by the input data value. An example of this simulation state is shown in Figure 5.11.
The data transition delay wassetto 17.04444ns.If the simulation is re-run with a 0.1pschangein
the delay (i.e., shifting the data transition by that amount) the resulting simulation output changes.
This indicates that this transition is occurring within the deepmetastability region. The beginning
of this region is indicated by an extremely steep increasein the clock{to{Q time of the ip-op

and also an inconsistencyin the output results when small shifts are made in the data transition
location. A plot of the data collected from one of these simulation setsis showvn in Figure 5.13.
Failed transitions|ones that did not causean output transitionlare not shawvn for readability.
The collected data matchesnicely to the generalizedapproximation for a ip- op's output response
shown in Figure 3.1. In this plot, deep metastability beginsat approximately{50 ps on the x-axis.

As mertioned in Section 3.1, the Ty parameter is the asymptotic width of the time aperture that

CHAPTER 5. HARDWARE IMPLEMENT ATION 44

Clock to output v.s. clock to data displacement (low to high transition)
T T T T T T T

600

500 b

N

o

o
T

I

*
*
*

Flip flop Clock to Output time (ps)
N w
o o
o o
T T
L L

100+ K g
7
-
~
OT**\’”\”ET‘JF47\4/ I I I L v]
500 450 400 350 300 250 200 150 100 50 0

Clk to Data displacement (ps)

Figure 5.13: Plot of HSPICE data used for determining Ty parameter (dashedline is tted expo-
nertial approximation, \2"= zerocrossingand \r "= tpeta)

the device enters metastability. Targeting just the deep, or true, metastability region provides
more accurate failure results than if the region is included where the ip- op output responseis
just delayed [26]. The shifted and tted exponertial function shown in Figure 5.13 estimates this
exponertial aperture width. The \r " symbol near{40 ps represens the tnea point as shown in
Figure 3.1. The \2" represens the zero crossing of the exponertial. The magnitude of the time
di erence on the x-axis betweenthe exponertial zero crossingand tmea is equalto To=2 [24]. The
estimated worst caseTy measuremeis for the syncironizer designshowvn in Figure 5.10 are listed
in Table 5.3.

Based on prior work in the area of syndronizers, the results shovn in Table 5.3 seem
reasonable. A jamb latch architecture has been showvn to have very good values[26]. In a
0.25 m CMOS process,simulations estimated and Ty for a jamb latch to be 20 ps and 15 ps
respectively [26]. This was then validated on silicon. Simulated estimatesof and T, for sewral
ip- op architectures in a 0.6 m CMOS processwere determined to be in the range of 56 ps{110
ps and 7 ns{73 ns respectively [27]. The dramatically larger valuesof To comparedwith the other
estimate and this work, are attributed to the larger processdimensionsand the fact that they did
not target deep metastability.

Table 5.4 shaws the estimated meantime betweenfailures of our syndronizer architecture

CHAPTER 5. HARDWARE IMPLEMENT ATION 45

MTBF Number of Syndronizing Flip- ops (N)
Clock Frequency 2 3 4 5
1000 MHz 25.81sec 39 10°years | 1.86 10" years| 8.91 10?° years
750 MHz 33.5days 2.44 10" years| 6.41 10?° years| 1.69 10* years
500 MHz 564 10° years| 4.69 10° years| 3.86 10° years| 3.20 10 years

Table 5.4: Estimated mean time between failures using synchronizer from Fig. 5.9 and worst case
simulated device parameters(To = 720ps, = 30.5ps,t = 300psand tn,x = 50 ps)

(Fig. 5.9) utilizing the syndhronizing ip- ops shown in Figure 5.10. To make the estimates, the
worst caseparameter measuremets were usedin conjunction with Equations 3.1 and 3.5. In this
case,there will alsobeaty = 50 ps value subtracted from the resolution time, to accourt for the
selectionmux clock to data delay. This mux delay can be made fairly small, sincethe con guration
valuesgenerallydo not changeduring run-time. Giventhat the resultsfor atwo ip- op syndronizer
in the frequency range of the target application shov MTBFs of greater than 1 billion years, the

failure rates are deemedto be acceptably low.

5.4 Gray/Binary Converters

5.4.1 Background

A Gray code is a digital code whereonly onebit changesbetweensuccessie code words[13].
Constructing a Gray code sequenceof an arbitrary bit length can be donerecursively. Two possible
methods for generating a Gray code sequenceare outlined by Wakerly [13]. As discussedin Sec-
tions 3.3and 4.2.1, this is the type of encading required when synchronizing a multi-bit vector with
ip- ops. Howewver, as shawvn in Chapter 2 and mentioned in Section4.2.1,it is more corveniert to
perform mathematical manipulations with a binary encaded vector. In the FIF O designthis results
in a stheme where vectors are mapped into a Gray code when being transferred acrossthe clock
boundary and are then mapped badk into binary for calculations once they are synchronized into
the clock domain.

Converting binary valuesto Gray code is straightforward. Given an n-bit binary vector

(bh 1;by 2; i by k), the Equations in 5.2 can be usedto corvert to an n-bit Gray coded vector

CHAPTER 5. HARDWARE IMPLEMENT ATION 46

bn-l bn-2 bn-3 . bl bO
- %iﬁ
gn-l gn-2 gn-3 Iy g0

Figure 5.14: Binary to Gray code conversion circuit

Oh1 One Ons b, g
(MSB)
b .. b,

n1 bn-2 b

n-3

Figure 5.15: GeneralizedN -bit Gray to binary corverter architecture

(On 1;00 2; i 01;00), where\ + " indicates the sum ignoring the carry.
(MSB) on 1 = by 1
Oh 2 = b1+ b
O3 = b2+ by (5.2)
Qo = b+

This can be accomplishedusing the XOR function and a generalcircuit architecture for performing
this conversionis shown in Figure 5.14. Sinceead bit can be calculated in parallel, the worst case
gate delay for this circuit for any n-bit vector is one XOR gate. The calculation requiresn 1 XOR
gates.

The reverse corversion from Gray to binary is similar to the above case. Given an n-bit

Gray coded vector (g, 1;0n 2; i ;01;00), the Equations in 5.3 can be usedto convert to an n-bit

CHAPTER 5. HARDWARE IMPLEMENT ATION 47

binary vector (b, 1;b, 2; :i: ;b by), where\ + " indicates the sum ignoring the carry.
(MSB) by 1 = Oh 1
bh 2 = b1+ Oho2
s = 2+ On 3 (5.3)
bh = b+ o

Unlik e the previous case,in this calculation all the bits|aside from the MSB|require the next most
signi cant binary bit output asan input. This resultsin a worst casegate delay of n 1 XOR gates
for an n-bit vector and alsorequiresa total of n 1 XOR gates. A generalcircuit architecture for

this corversion can be seenin Figure 5.15.

5.4.2 Circuit design

The 32-ertry FIFO neededfor the target application requires a 6-bit address eld to be
corverted to Gray code for transmission betweenclock domains. For a 6-bit input vector, the binary
to Gray corverter shawn in Figure 5.14, will have a worst casedelay of one XOR gate. A fast XOR
gate can be constructed from 6 transistors. The delay of this gate was measuredto be roughly
150 ps. Howewer, this circuit has a path that consistsof only two passtransistors. To increase
the robustnessand the output drive capabilities of the gate, a similar topology with an inverter
output bu er can be used. Howeer, this increasesthe propagation delay by approximately 50 ps,
in the worst case. An example of this circuit can be seenin the sum logic of Figure 5.19. Circuit
simulations on the extracted corverter circuit indicate that the worst casepropagation delay for the
module was 200 ps with a default load capacitance.

If the architecture in Figure 5.15 were usedfor the Gray to binary cornversion, the worst
casedelay would be 5 XOR gatesin series,yielding a propagation delay of approximately 1 ns based
on the above results. This logic block is in serieswith seeral other piecesof slow logic, which ends
up creating the worst casedelay path in the rst stageof the FIFO. Therefore, reducing the delay
hereis bene cial to increasingthe overall speedof the module.

The long propagation time is dueto the ripple e ect in the circuit| i.e., lesssigni cant bits
require information from higher bit calculations before they can calculate their results. A similar
problem is found in ripple-carry adders[1]. A carry-select architecture is a straightforward way to

reduce the worst casepropagation delay of such adders[1]. A similar technique can be used for

CHAPTER 5. HARDWARE IMPLEMENT ATION 48

O O 9 9, 9 O % %

O <€

Figure 5.16: Six-bit Gray to binary corversion circuit

the Gray to binary cornverter circuit. A 6-bit implementation utilizing this technique can be seenin
Figure 5.16. The main idea is to break apart the ripple path. Sincethis circuit has a ripple path
of 5 gates, breaking it more than oncewould result in signi cantly larger areawith little speed-up,
accordingly it is broken only once. The circuit hardware is then duplicated and one set of gatesis
usedto calculate the result if the ripple bit incoming to the breakpoint was a \1" and the other
calculatesthe result if the incoming ripple bit wasa\0". The two valuesare then multiplexed and
the true ripple value is usedto pick the correct result. For this architecture, the critical delay path is
reducedfrom 5 XOR gates,to either 2 XOR gatesplus a mux cortrol input to output, or an inverter
plus 2 XOR gatesplus a mux data input to output. The extracted layout circuit simulations shoved
a worst casedelay of 520 ps. This achievesa 48% reduction in delay from the normal architecture.
The cost in circuit areais about an 81% increasefrom 185 m? to 336 m2. Howewer, the actual
physical areaincreaseis small comparedto the total designsizeand is a worthwhile costfor reducing

the delay by nearly one half.

5.5 Binary Incremen ters

In order to keeptrack of the addresspointer locations, an unsignedbinary incremerter is
required. The primary componert to this module is a plus one adder. The addresspointers are six
bits, so a standard unsigned binary adder could be usedto compute this sum. However, because
the module needsto do only two operations|hold and incremert by one|the module can be made
smaller and faster by designing custom logic for the plus one operation. This module also has a
ripple-carry path, soa carry-selectarchitecture wasusedto reducethe propagation delay. A diagram
of the plus one adder module is showvn in Figure 5.17. In this case,implemerting the carry-select

architecture had little impact on the active area, which resulted in only a 17% increasefrom 290

CHAPTER 5. HARDWARE IMPLEMENT ATION 49

Ing In, In, In,
A A
Half Adder Cell
HA HA (HA)
Com B < Com B
Sum Sum
A 4

out,

Figure 5.17: Six bit binary incremenrter circuit

m? to 340 m?. The AND gatesusedfor the half-adder carry have delays of 125 ps, and the XOR
gates had a 200 ps delay. Without the carry-select architecture, the total delay would have been
4-AND gatesplus one XOR gate, yielding a total delay of 700 ps. Again this logic is in serieswith
other logic in the pipeline stage, making this a critical delay. The carry-select reduced the worst
casedelay to 370 ps, which is an 89.5% speed-up.

The remainder of the incremerter module consists of two six-bit multiplexers and a six-
bit register. The two control inputs are increment and reset The complete module is shown in
Figures 5.22 and 5.23. The rd_request signal coming into the FIF O arrivesnear the end of the clock
cycle becauseof the amourt of upstream logic required to generateit. Since the plus one adder
takessometime and its result is neededby other units, the add is always computed as soon as the
incrementer register changes. This way the result is ready by the time the rd_request signal arrives,

and other units are not waiting for this signal to begin their computations.

5.6 Reserve Logic

The calculation of the \In Resene" (i.e., the FIFO cannot accept anymore data) signal
is the most complicated arithmetic logic required in the design. The necessaryoperation is given
in Equation 2.3. As noted previously, the form of the secondequation is easierto implemert in
hardware and that is the form chosenhere. For this implementation eat of the input address
vectors are 6-bits wide. The resene constart needsto be only 5-bits sinceits value should always
be lessthan the number of FIFO memory locations, which is 32 in this case. Howewer, here it is
just shown to be a standard input. A dot diagram detailing the operation is shovn in Figure 5.18.

Each dot represetts a bit in the calculation. The rst step takenis to usea full adder|also called

CHAPTER 5. HARDWARE IMPLEMENT ATION 50

77777777777

,,,,,,,,,,,,,,,,,,,,,

o
L — — 4o

[——

Figure 5.18: Dot diagram represerting \In Resene" adder function

a 3:2 compressorin this context[to compressthe three input vectors into two vectors in carry-
save format. The 3:2 function is shown to the right of the dot diagram. An interesting part of
this adder designis that only bit usedis the MSB (r5 in this case). If this bit is high then the
spaceleft in the FIFO is lessthan or equal to the amount of resene space. The valueswith \X™s
through them are \don't care" valuesand are not necessaryfor determining the desired output r5.
To perform the subtraction of the read pointer it can be converted to a negative number and then
added. Accordingly, it needsto be inverted and a one needsto be addedin the LSB. The inversion
occurs before the vector enters the rst row of 3:2s. Once the vectors are compresseda nal add
needsto take placeto transform the valuesout of carry-save format. This requiresa standard binary
adder. To achieve a lower propagation delay, we choseto usea carry-selectimplementation for this
adder. Becausethis logic is in serieswith the Gray to binary corversionit wasimportant to make
it fast.

The full adder (3:2) implementation used for this module is shovn in Figure 5.19. The
3-input XOR function usedto compute the Sum output is built with a two-level structure. It
is bene cial to choosethe inputs to this structure carefully such that the latest arriving signal is
connectedto the Cj, input. The earliest arriving input should be connectedto the slower of the
other two, which is B in this case. This way the rst XOR has all ready computed its result and
only one XOR delay is left when the late input arrives. The inputs are alsointernally connectedto
the carry logic with the sameordering preferenceto minimize the body-e ect on the transistors in
that logic. This carry-logic is built using a mirror adder [1] topology. This calculatesthe carry with
a single stage, instead of the two stagesrequired for a standard sum-of-products implemertation.
The caveat is that the signal producedis the inverted C,; value, however, this can be dealt with at
the architecture level of the adder, without requiring the useof invertersin the carry-ripple path [1].

The nal architecture for the resene logic is shavn in Figure 5.20. As noted, the ripple-

CHAPTER 5. HARDWARE IMPLEMENT ATION 51

1
1
L

|o

e [TN
,,,,,,,,,,,,,,, S b{ >
AL o
cond B I 77777777

Figure 5.19: Hardware implementation of a full adder circuit

adder is broken apart, and the secondripple-carry Coy Value (Co2 in Fig. 5.20) is usedto select
the correct output. To accourt for the inversion of the carry bit, every other carry-logic block
has all of its inputs inverted. As shown in Figure 5.19, the carry logic used in the full adder
implementation producesthe inverted Cq,; asnoted by the bubbles on these outputs from the rst

rows of 3:2s. Instead of adding an inverter and then subsequetly adding an additional inverter
to eat carry output, every other set of inputs to the secondrow of carry logic is inverted. This
producesalternating Co; and Co values. The Coy valuesare indicated by inversion bubbles on

the Coyt ports of the logic blocks. The standard carry out logic is shovn in Equation 5.4.
Cout = A B + A Cm + B Cm (5.4)

Equation 5.6 showsthe logic function that isimplemented with the mirror addercarry logic. Through

logical manipulation it can be showvn that equations 5.5 and equations 5.6 are equivalert.

Cout = (AB+ A C, + B Cp) (5.5)

Cin + § Cin (5-6)

>|

Cout = A B +

The result of this is that by complemening all of the inputs to the mirror carry cell, the uncom-
plemerted version of C,,; can be generated. This principle can be usedto prevent having to add
additional invertersin the ripple path. Instead inverters are addedin parallel to someof the signals
coming out of the rst row of adders. This addsonly oneextra inverter delay to the worst casepath
instead of one per carry-ripple stage.

As mertioned above the input arrivals times should be matched to the appropriate input.
In this case,the choiceswere easyto make becausethe input arrivals have a clear ordering. As

shown in Figure 5.22, the three inputs to the adder are the write pointer, read pointer and resene

CHAPTER 5. HARDWARE IMPLEMENT ATION 52

wr[5] res[5] rd[5] wr[4] req[4] rd[4] wr[3] req3] rd[3] wr[2] req2] rd[2] wr[1] res[1] rd[1] wr[0] res[0] rd[Q]

A T A O A O T A

A B ¢c| [A B C][A B CJ][A B CJ][A B CJ| [A B C
Sum Logic Full Full Full Full Full
Adder Adder Adder Adder Adder
Sum
Com Sum Com Sum Coul Sum Coul Sum COUI Sum

vy v
\ 4 \ 4 ¢ A 4 A 4 C C le«gC C

A

A B Cin A B Cin Co2 out in out in
Carry Logic Carry Logic
Carry Logic Carry Logic
CJLH COLII

A B C.l|A B C, Ny
> 1
Sum Logic Sum Logic wr hold
=
Sum Sum
— 0

Figure 5.20: Three input, six bit adder for determing the \In Resene" condition

value. The resene value is static at run-time soit will clearly bethe rst available input. The write
pointer comesdirectly out of a register, soit will be available after approximately 250 ps. The read
pointer is the slow input and will averageabout 350 ps with 535 ps in the typical worst case.

The nal circuit layout has an active area of 908 m?. The total worst casepropagation
delay for the circuit is 515ps. The rst row of adderstakesapproximately 200 ps for both the carry
and sum logic, although this may be slightly improved basedon the input arrival ordering mertioned
above. The remainder of the worst casedelay path is from the inputs to the NAND and NOR gates

through the carry logic, through the sum logic and then through the output selection multiplexor.

5.7 Comparators

In order to determine the FIFO empty condition, the two address pointers needto be
compared. If all six bits are equal then the FIFO is in the empty state. The implemenrtation of the
comparator logic is straightforward and logically consistsof a bitwise XNOR of the two input vectors

followed by an AND-w ord operation. In this case,a six input AND gate is needed,requiring a worst

CHAPTER 5. HARDWARE IMPLEMENT ATION 53

A0
BO
Al
Bl
A2
B2
A3
B3
A4
B4
A5
B5

Figure 5.21: Six bit comparator for determing the \empty" condition

i: Equa

casepath of six NMOS in seriesfollowed by a PMOS pull-up in the inverter. To better optimize
the circuit, the AND function was split into two stagesand then transformed into a NAND/NOR
network. The resulting equation is logically implemented as shown in Figure 5.21. Minim um-sized
inverters are placed on all inputs to reduce the input load capacitance and facilitate the use of a
transmission gate XNOR without an output inverter. An example of this implementation is shown
in the XNOR box of the secondstageof the sum logic in Figure 5.19. Inverting all the inputs to the
2-input XNOR doesnot logically modify the gate becauseit is a symmetric function.

The nal layout requires300 m? and the worst casedelay of the extracted circuit is 315ps.

5.8 Top-level FIF O Mo dule

The nal FIFO module requiresthe compilation of the modules described in Sections5.2{
5.7. Figure 4.1 shows a high-level diagram of the dual-clock FIFO design. As discussed,the nal
hardware module will be integrated into the AsAP processor.The FIF Os are placedin closeprox-
imity to the processorthat is connectedto the read side of the FIFO. The inputs and outputs for
the write side of the FIFO are connectedto the producer processorthrough longer busses. These
busesare multiplexed just beforethey reach FIF O. The connectionsare cortrolled with con guration
inputs sothat they canbe modi ed asrequired by the current application. The synchronizer con g-
uration and reservevaluesare suppliedto the FIF O externally by the local processor'scon guration

memory.

CHAPTER 5. HARDWARE IMPLEMENT ATION 54

Stage 1 Stage 2
reset wr_valid data_in

Incrementer | |

A
| wr_addr_ptr

from = - 6 ([Binay N to read side
read side Grayto " 6 "\ toGray
2 JV Y

|
| ~N »
wr_hold I
Equivalence
|] | I
| async_empty | Wr_request |

Figure 5.22: Pipeline diagram for the write side of the FIFO

The target application processoris pipelined for increasedclock frequencies. The write
side of the FIFO ts fairly easily into a pipelined design, since the resene spaceis con gurable
and is accourted for in the adder module. A pipeline diagram for the write side of the FIFO is
shown in 5.22. Wire latency and logic delays in the interface path are introduced in Section2.2.2
and details for this design are discussedin Section 4.2.2. One designrequiremert from the AsAP
architecture is that the write side of the FIFO must be asyndronously resettable. This is because
the FIF O is located within the processorthat is tied to the read side of the FIFO. The write side
of the FIFO may or may not be in use. If the unit is not being used, it will not be supplied with
a write clock. Howewer, random initial valueswithin the FIFO write side registerswere shown to
causeproblems during application simulations. Accordingly, they needto be reseteven if the FIFO
write clock doesnot oscillate. All registerswith asyndironous resetsare marked with a \clr" .

The read side of the FIF O is also pipelined into two stages. Sincethis side is synchronous
with respect to the local processor all the resetson this side of the FIF O are syndronous. Registers
with a reset capability are marked with a \r es". An additional concernis that the rd_requestsignal
arrivestowards the end of the clock period, sothe logic is designedto be able to do most of its work
prior to learning the true value of this signal.

As mentioned, both sides of the FIFO have an output that is used in the other clock
domain even though it is asyndronous with respect to the other clock. This signal is used as an

asyndronous wake-up for sleepingprocessors.For example,if the write side processorgoesto sleep

CHAPTER 5. HARDWARE IMPLEMENT ATION 55

Stage 1

rd_request

_Incrementer

1)

6 [Tes] Tes
(dpr+1) [Binary 6 | [towriteside
"\ to Gray e
La
|
|
|
|
|
|
|

from
write side

\/
6 [Grayto 6)
'@——/—» Equivalence

async_full empty

Figure 5.23: Pipeline diagram for the read side of the FIFO

waiting for the downstream FIF O to acquire free space,its clock will halt. This results in all the
register values on the write side of the FIFO becomingfrozen. Accordingly, the state of the write
sideof the FIFO is lockedand it will never be able to indicate to the processorthat the FIFO hasfree
space(normally indicated with the wr_requestsignal). Accordingly, a replica of the logic to generate
this signal is placed on the read side of the FIFO. In this way, when the read side begins emptying
the FIFO it can indicate to the sleeping processorthat there is free spaceso it can restart and
complete its write to the downstream FIF O. The analogouscaseappliesto the read side processor
sleeping,waiting for data it needsto completeits current instruction to enter the FIFO. Sincethese
signalsare not being used synchronously within the clock domain that is generating them, there is
no timing requiremert for them.

As discussed,the FIFO employs a two line signalling corvention. On the read side, the
FIF O is always indicating whether or not it is empty. This is the active port. The interface logic
responds to this signal. If the FIFO is not empty, it will supply a requestsignal indicating that it
wants data. This data will be supplied one cycle later from the FIFO SRAM. On the write side,
the FIFO suppliesa requestsignal. If the FIFO is not requestingdata, the producer should not try
to write to the FIFO. Instead, it should wait until there is spacein the FIFO (i.e., wr_requestis

asserted),and then signal that there is valid data usingits cortrol line (wr_valid).

CHAPTER 5. HARDWARE IMPLEMENT ATION 56

Units utilized per FIFO | Active area(m?)
SRAM 1 30,507
Syndhronizer 2 3,867
Resene logic 2 908
Comparator 2 300
Gray to binary conv. 2 336
Binary to Gray corv. 2 186
Incremerter 2 1530
Total 44,761

Table 5.5: Area breakdown for the FIFO hardware module

5.8.1 Performance and analysis

The nal layout of the dual-clock FIFO module is shown in Figure 5.24 and has approxi-
mately 44,761 m? of active area. The minimum rectangle it occupiesis 66,500 m? in area. The
module shown is only the rst passlayout. With further layout optimizations it would likely be
possibleto pack the modules more tightly and t the designinto a smaller rectangle. Table 5.5
shaws the active areasfor the individual componerts of the FIFO. The SRAM occupiesthe most
area followed by the syndronizers. These modules occupy 67.7% and 17.5% of the active areare-
spectively. In someapplications the asyncronous wake-up signals would not be required. In this
case,one resene logic unit and one comparator unit could be removed, reducing the active are by
about 1,200 m?,

The FIFO SRAM simulates correctly at 865 MHz with a 1.8 V supply. Unfortunately, the
the rst stage of the FIFO pipeline is the bottleneck in terms of speed, so the ertire FIFO cannot
operate at this speed.

Based on the HSPICE timing simulations, the critical path is equal on both sidesof the
FIFO. On the write side, this path consistsof the Gray to binary corverter module in serieswith
the adder that producesthe wr_hold signal. In order to increasethe performance,the inverter that
createsthe wr_request signal was moved into the next pipeline stage. The total worst casedelay
in this path under typical conditions is 535 ps for the corverter plus 515 ps for the adder plus a
ip-time of 250 ps. The total delay is then 1.3 ns.

The read side's worst case path is through the Gray to binary converter, followed by
the equivalence detector, then through an inverter/AND gate combination and nal through two
multiplexors. The respective delays are 535 ps, 315 ps, 150 ps and 50 ps. Combined with a ip- op
time of 250 ps, this results in a total delay of 1.3 ns. This assumeghat the rd_requestarrivesbefore

approximately 800 ps, which is reasonablebasedon the logic that is creating that signal. If that

CHAPTER 5. HARDWARE IMPLEMENT ATION 57

mﬁ;mmmsmr*---
T war ke.g 8 0 g

Figure 5.24: Final layout for the dual-clock FIFO module (incr= incremerter, comp= comparator,
res= resene, incr= incremerter, predec= predecaler, WL= wordline)

signal were delayed any longer than that, the read side would further limit the maximum frequency

The resulting maximum clock frequency for the rst stage, and subsequetly the ertire
FIF O, is approximately 770 MHz.

As discussedin Chapter 2, some of the key performance metrics in a FIFO design are
robustness,throughput, energy-e ciency, scalability, latency and clock rate.

For this design, robustnessis the top designgoal, sotrade-o s (mainly speed)were made
in order to ensurethat the FIFO would operate robustly when fabricated.

Secondly sincethe target application is an array of DSP processorsit is highly desirable
to achieve a throughput of one datum per cycle. The nal design can support a throughput of
one datum per cycle up to its maximum clock frequency This occurs when the consumption and

production rates are similar, suc that there are constart writes to and readsfrom the FIFO. This

CHAPTER 5. HARDWARE IMPLEMENT ATION 58

throughput is not limited by the clock frequency so if techniques were usedto increasethe peak
clock frequencythe throughput would remain at one datum per cycle.

The overall energy-e ciency will be more clearwhenhardware is available to make accurate
power measuremets. There are two main areasthat will help to ensurethe energy-e ciency of
this design. The rst is the utilization of enableswithin the memory core, which prevents high
capacitancenodesinside the memory from switching unnecessarily Secondly through the support
of dynamic frequency scaling, the FIFO can operate in a fashion whereit can be sped up or slowed
down at run time to more precisely match its requiremerts at a given time period, soit only uses
enoughenergyto meetits current goal.

This designalso achievesa high degreeof scalability. Two primary componerts factor into
the scalability of the design. The rst is the FIFO logic itself and the secondis the memory core.
In the design demonstrated here, the FIFO logic is the bottleneck in terms of speed, however, as
the overall FIFO size grows the memory will becomethe important factor. This is becausethe
FIF O logic requires only minor changes,the highestimpact being an addresswidth increaseof one
bit every time the FIFO depth doubles. No cortrol changesare required for the FIFO when the
data width changes. As the memory sizeincreasesthe latency will alsoincrease. If the memory is
adequately pipelined, the module will still be able to maintain a throughput of one datum per cycle.
Accordingly, the two main issuesthat impedein nite scalability of the designare the throughput and
latency requiremerts of the application. Being able to maintain the FIF O throughput is contingent
upon being able to pipeline the memory enoughto maintain the desired throughput through the
memory core. The latency will likely becomedominated by the memory asit continuesto grow, so
from this standpoint it is simply an issueof how much the latency of the memory can be reduced
by and how much latency the application can tolerate.

The minimum latency of the designis the time it takesone item to propagate from the
input of the FIFO to the output of the FIFO assumingthat it doesnot have to wait for other items
to be removed ahead of it. A casewhere this may happen is the situation where the consumeris
constartly requesting data and the producer is supplying it infrequertly. Determining a minimum
latency for this FIFO is somewhatdi cult due to the fact that the read and write side clocks are
totally unrelated and dynamic, and total latency depends on both. To get a generalidea of the
size of this delay it can be measuredfor the casewhere the two clocks are operating at the same
frequency which is equalto the maximum frequencyof the FIF O. This delay is alsocortingent upon

the number of synchronizer stagesutilized in the design. For this measuremen two stagesare used.

CHAPTER 5. HARDWARE IMPLEMENT ATION 59

The latency can then be boundedto three write clock cyclesplus three read clock cycles. The total
worst caselatency for this designis then six clock cycles,which yields a total latency of 7.8 ns at
the minimum clock period of 1.3 ns. Depending on the relative phaseof the two clocks, one of the
clock cycle delays included above may be reducedto just one ip-op clock-to-Q delay (250 ps).
This is the casewhere the asyndironous signal is sampledimmediately after it changesby the read
side synchronizer. In this casethe delay will be minimized and will be equalto 6.75ns.

The nal concernis more generaland is the support of high clock rates. The demonstrated
designcan support clock rates of 770 MHz in a 0.18 m process,which is fast enoughfor the target
application. Higher clock rates can be achived by further device size optimization, utilizing a faster

style of circuits, or changing the fabrication technology.

60

Chapter 6

Conclusion

6.1 Summary

The primary areas covered in this thesis are single-clack FIF Os, synchronization and
metastability, dual-clock FIF O architectures, and a hardware implementation of a dual-clock FIF O.

This thesis provides a comprehensie exploration of dual-clock FIF O design. The module
can be used for interfacing units with unrelated clocks in high-speed applications. The proposed
architecture is well suited for all dual-clock applications and achieves high energy e ciency , good
scalability and area utilization, and arbitrarily high robustness. This architecture can be utilized as
a drop-in module to many applications. Additionally , it may alsobe customizedusing the trade-o s
explored throughout this thesis.

The demonstrated hardware implementation occupies an active area of approximately
45,000 m? in 0.18 m CMOS technology and simulations indicate an operation range of up to

770 MHz under typical conditions.

6.2 Future Work

The VLSI implemertation of the nal hardware designis currently being integrated into
AsAP project layout, which is projected to be fabricated in the near future.

Se\eral areaswill be of particular interest when the hardware returns. One of the primary
guestionsis the actual robustnessto metastability. As mentioned, in the AsAP chip design,there will
be a parameter allowing the trade-o betweenlatency and metastability to be exercised. It will be

interesting to seehow well the estimated MTBF valuesmatch the measuredvaluesin the hardware.

CHAPTER 6. CONCLUSION 61

Additionally , investigations into utilizing alternative methods to syndronization within the FIFO
would be worthwhile. The method employed in this caseis consideredthe brute force method, and
the syndhronization circuits ended up occupying a substartial portion of the nal layout. Another
areathat may be worth exploring is building the memory core out of alternativ e structures. Since
the memory is the largest block in the FIF O, investigationsinto power and area reductions|while

maintaining reliabilit y|could have substartial impact on the overall module design. Furthermore,
with additional circuit level and sizing optimizations it may be possibleto improve the overall delay
of the rst stage of the FIFO. This would result in an increased operation range for the FIFO

hardware design.

62

Bibliograph y

[1] J. M. Rabaey A. Chandrakasan,and B. Nikolic, Digital Integrated Circuits, A Design Perspec-
tive, Prentice Hall, Upper Saddle River, NJ, 2003.

[2] R. Ho, K.W. Mai, and M.A. Horowitz, \The future of wires," in Proceedings of the IEEE, Apr.
2001, vol. 89, pp. 490{504.

[3] G. Semeraro,G. Magklis, and et al., \Energy-e cien t processordesign using multiple clock
domains with dynamic voltage and frequency scaling,” in International Symposium on High-
Performance Computer Architecture, Feb. 2002, pp. 29{40.

[4] D. M. Chapiro, Glohally-Asynchronous Locally-Synchronous Systems Ph.D. thesis, Stanford
University, Stanford, CA, USA, 1984.

[5] Bevan M. Baas, \A parallel programmable energy-e cient architecture for computationally-
intensive DSP systems," in Signals, Systemsand Computers, 2003. Conference Record of the
Thirty-Seventh Asilomar Conference on, Nov. 2003.

[6] M. Balch, Complete Digital Design, McGraw-Hill, New York, NY, rst edition, 2003.
[7] I. Sutherland, \Micropip elines,” in Communications of the ACM, 1989, vol. 32.

[8] E. Brunvand, \Lo w latency self-timed o w-through fos," in Advaned Resarchin VLSI, Mar.
1995, pp. 76{90.

[9] I. Sutherland and S. Fairbanks, \GasP: A minimal FIFO cortrol,” in Advaned Resarch in
Asynchronous Circuits and Systems Mar. 2001, pp. 46{53.

[10] J. T. Yantchev, C. G. Huang, M. B. Josephs,and I. M. Nedeldev, \Lo w-latency asyncdronous
FIFO buers,"” in Proc. Asynchronous Design Methodologies May 1995.

[11] Chris J. Myers, Asynchronous Circuit Design, John Wiley & Sons,Inc., 2001.

[12] W. J. Dally and J. W. Poulton, Digital SystemsEngineering, Cambridge University Press,
Cambridge, UK, 1998.

[13] J. F. Wakerly, Digital Design: Principles and Practices Prentice-Hall, third edition, 1999.

[14] M. Hurtado and D. L. Elliot, \Am biguous behavior of bistable elemeris,” in Allerton Conf. on
Circuit and SystemTheory, Oct. 1975, pp. 605{611.

[15] M. Pedhoucek, \Anamolous responsetimes of input syndironizers," in IEEE Journal of Solid-
State Circuits, Feb. 1976, vol. 25, pp. 133{139.

[16] I. Saderquist, \Globally updated mesahronous designstyle,” in IEEE Journal of Solid-State
Circuits, July 2003, pp. 1242{1249.

[17] R. Ginosar and R. Kol, \Adaptiv e synchronization,” in IEEE International Conference on
Computer Design, Oct. 1998, pp. 188{189.

BIBLIOGRAPHY 63

[18] J. U. Horstmann, H. W. Eichel, and R. L. Coates, \Metastabilit y behavior of CMOS ASIC
ip- ops in theory and test," in IEEE Journal of Solid-State Circuits, Feb. 1989, vol. 24, pp.
146{157.

[19] M. Bolton, \A guided tour of 35 yearsof metastability researt," in Western Electronic Show
and Convention (WESCON), Program Sessionl16, 1987.

[20] T. J. Chaneyand C. E. Molnar, \Anomalous behavior of synchronizer and arbiter circuits," in
IEEE Transactionson Computers Apr. 1973, pp. 421{422.

[21] L. R. Marino, \General theory of metastability,” in IEEE Transactionson Computers 1981,
pp. 107{115.

[22] J. H. Hohl, W. R. Larsen, and L.C. Scooley, \Prediction of error probabilities for integrated
digital synchronizers," in IEEE Journal of Solid-State Circuits, Apr. 1984,vol. 19, pp. 236{244.

[23] S. T. Flannagan, \Synchronization reliability in CMOS technology," in IEEE Journal of Solid-
State Circuits, Aug. 1985, pp. 880{882.

[24] C.L. Portmann and H.Y. Meng, \Metastabilit y in CMOS library elemers in reduced supply
and technology scaledapplications,” in IEEE Journal of Solid-State Cir cuits, Jan. 1995, vol. 30,
pp. 39{46.

[25] J. Jexand C. Dike, \A fast resolving BINMOS syndhronizer for parallel processorinterconnect,”
in IEEE Journal of Solid-State Circuits, Feb. 1995, vol. 30, pp. 133{139.

[26] C. Dike and E. Burton, \Miller and noisee ects in a syncronizing ip- op,” in IEEE Journal
of Solid-State Circuits, June 1999, pp. 849{855.

[27] Uming Ko and P. T. Balsara, \High-p erformanceenergy-e cient D- ip- op circuits,” in IEEE
Transactionson Very Large Sale Integration (VLSI) Systems Feb. 2000, pp. 94{98.

[28] D. J. Kinniment, A. Bystrov, and A. V. Yakovlev, \Synchronization circuit performance," in
IEEE Journal of Solid-State Circuits, Feb. 2002, pp. 202{209.

[29] Y. Semiat and R. Ginosar, \Timing measuremets of syncironization circuits," in Advancd
Resarch in Asynchronous Circuits and Systems May 2003, pp. 68{77.

[30] R. Ginosar, \F ourteen ways to fool your synchronizer," in Advaned Research in Asynchronous
Circuits and Systems May 2003, pp. 89{96.

[31] J. N. Seizwic, \Pip eline syndhronization," in Advaned Resarch in Asynchronous Cir cuits and
Systems Nov. 1994, pp. 87{96.

[32] F. U. Roserberger, C. E. Molnar, T. J. Chaney, and T.-P Fang, \Q-mo dules: internally clocked
delay-insensitive modules,” in IEEE Transactionson Computers Sept. 1988,vol. 37, pp. 1005{
1018.

[33] K. Y. Yun and A. E. Dooply, \P ausible clocking-based heterogeneoussystems," in IEEE
Transactionson Very Large Sale Integration (VLSI) Systems Dec. 1999, pp. 482{488.

[34] J. Muttersbach, T. Villiger, and W. Fichtner, \Practical designof globally-asyncronouslocally-
syndhronoussystems," in Advaned Research in Asynchronous Cir cuits and Systems Apr. 2000,
pp. 52{59.

[35] S. Moore, G. Taylor, R. Mullins, and P. Robinson, \P oint to point GALS interconnect,” in
Advaned Resarch in Asynchronous Circuits and Systems Apr. 2002, pp. 62{68.

[36] D. S. Bormann and P. Y. K. Cheung, \Async hronous wrapper for heterogeneoussystems," in
IEEE International Conference on Computer Design, Oct. 1997, pp. 307{314.

BIBLIOGRAPHY 64

[37] C. J. Myersand A. E. Sjogren, \In terfacing synchronous and asyncronous modules within a
high-speed pipeline," in IEEE Transactionson Very Large Sale Integration (VLSI) Systems
Oct. 2000, pp. 573{583.

[38] J. Kessels,A. Peeters, P. Wielage, and S. Kim, \Clo ck synchronization through handshale
signalling,” in Advanad Resarch in Asynchronous Circuits and Systems Apr. 2002, pp. 5%
68.

[39] J. Mekie, S. Chakraborty, and D. K. Sharma, \Ev aluation of pausible clocking for interfacing
high speedIP coresin GALS framework," in International Conf. on VLSI Design Jan. 2004,
pp. 559{564.

[40] R. Dobkin, R. Ginosar, and C. P. Sotiriou, \Data syncronization issuesin GALS SoCs," in
Advaned Resarch in Asynchronous Circuits and Systems Apr. 2004, pp. 170{180.

[41] C. E. Molnar, I. W. Jones,W. S. Coates,and J. K. Lexau, \A FIF O ring performance experi-
ment," in Advaned Research in Asynchronous Circuits and Systems Apr. 1997, pp. 279{289.

[42] J. Ebergen, \Squaring the FIFO in GasP," in Advaned Resarch in Asynchronous Circuits
and Systems Mar. 2001, pp. 194{205.

[43] T. Chelceaand S. M. Nowick, \A low-latency FIFO for mixed-clock systems,"” in IEEE
Computer Scciety Workshop on VLSI, Apr. 2000, pp. 119{126.

[44] C. Cummings, \Simulation and synthesis techniques for asyndironous FIFO design,” in Syn-
opsysUsers Group, Oct. 2002.

[45] \NC{Verilog," http://www.cadence.com/products/functional_ver/nc- verilog/index.
aspx.

[46] \Magic { a VLSI layout system," http://visi.cornell.edu/magic/
[47] \HSPICE," http://www.synopsys.com/products/mixedsignal/hspice/

[48] \Digital integrated circuits { the IRSIM corner," http://bwrc.eecs.berkeley.edu/Classes/
IcBook/IRSIM/ .

[49] B. S. Amrutur, Designand analysis of fast low power SRAMs, Ph.D. thesis, Stanford University,
Stanford, CA, USA, 1999.

[50] L.-S. Kim and R. W. Dutton, \Metastabilit y of CMOS latch/ip-op," in IEEE Journal of
Solid-State Cir cuits, Aug. 1990, pp. 942{951.

[51] F. U. Roserberger, C. E. Molnar, and R. W. Dutton, \Comments, with reply, on "metastability
of CMOS latch/ ip-op'," in IEEE Journal of Solid-State Circuits, Jan. 1992, pp. 128{132.

[52] A. lyerand D. Marculescu, \P ower and performanceevaluation of globally asyndironouslocally
syndhronousprocessors,"in International Symmsium on Computer Architecture, May 2002, pp.
158{168.

[53] C. L. Seitz, Introduction to VLSI Systems chapter 7, \System Timing", C.A. Mead and L.A.
Conway, Eds. Addison-Wesley Reading, MA, 1980.

[54] H.-S.Jung and M.-K. Lee,\Analysis and implemertation of interfacefor heterogeneousystem,"
in Asia Pacic Conference on ASICs, Aug. 2000, pp. 21{26.

[55] T. Chelceaand S. M. Nowick, \Robust interfacesfor mixed-timing systemswith application to
latency-insensitive protocols,” in Design Automation Conference, June 2001, pp. 147{150.

