INTRODUCTION TO FULL-CUSTOM LAYOUT (Chapter 2)

AND THE MAGIC LAYOUT TOOL

3D Perspective

Polysilicon

Source: Digital Integrated Circuits, 2nd ©
CMOS Process

A Modern CMOS Process

Dual-Well Trench-Isolated CMOS Process
nwell and pwell

- The "bodies" of the transistors

Source: Omar Sattari

ndiffusion and pdiffusion

- Source and Drain for each transistor

Source: Omar Sattari
Polysilicon

- Gate of transistors and for short-distance wiring

metal1

- First level of interconnect

Source: Omar Sattari
metal2

- Second layer of interconnect

Building an Inverter: Starting with Well and Diffusion

- Place N-type and P-type diffusions
 - Convention is to place PMOS on top and NMOS on bottom

Source: Omar Sattari
Transistors

- poly crossing diffusion produces a transistor!
- Common gate here
- PMOS shown on top
- NMOS shown on bottom

metal1

- metal1 laid down but not yet connected
- Use metal for Vdd and Gnd
- Labels added
 - Extremely useful for testing
 - Documents design
 - Use “point” labels, not large area ones
 - Never use global labels that end in an “!”
metal1 contacts

- Connections now made between metal1 and:
 - pdiff
 - ndiff
 - poly
 - nwell
 - pwell
- Each via/contact is a different layer in magic

Source: Omar Sattari

metal2

- Use metal2 for longer distance routing
- Routes over the “top” of other circuits shown
- metal2 contacts connect metal1 and metal2 only

Source: Omar Sattari