CLOCKS
Clocks in Digital Systems

• Clocks pace the flow of data inside digital processors
• The exact speed of data through circuits is impossible to predict accurately due to factors such as:
 – Fabrication process variations
 – Supply voltage variations
 – Temperature variations
 – Countless parasitic effects (e.g., wire-to-wire capacitances)
 – Data-dependent variations (e.g., 1 OR 1 = 1 versus 1 OR 0 = 1)
• Clocked pipeline memory elements slow down the fastest signals, wait until all signals have finished propagating through logic, and release them into the next pipeline stage simultaneously
Robust Clock Design

- Edge-triggered memory elements (flip-flops) are generally more robust than level-sensitive memory elements (latches) if the clock can be delivered with low skew.

- Safe design practices (always follow these rules in this class):
 - *Only clock signals may connect to flip-flop or latch clock inputs*
 - A simpler circuit may sometimes be possible if a logic signal is connected to a clock input, but do not do it for robust design.
 - *Clock signals may not connect to any node other than a flip-flop or latch clock input*
 - No logic gate inputs
 - No flip-flop or latch inputs other than the clock input
 - A few common exceptions that must be very carefully designed include:
 - Clock generation circuits
 - Clock gating circuits
 - Clock tree buffers
Multi-rate Hardware Clocking

- There are three main approaches to clocking multi-rate systems

1) Build slower divided clocks with FFs
 - Some FFs are clocked by the real clock signal, others are clocked by a delayed slower clock_freq-half signal coming from a frequency divider. Significant clock skew \(\rightarrow\) potential for dead chip 😞
 - Could risk your job security (moderate exaggeration)

2) Use multi-frequency clocks
 - Requires an independent clock tree for each frequency and possibly an independent phased-locked loop (PLL)
 - May save significant power in main processing circuits
 - Each PLL uses significant power
Multi-rate Hardware Clocking

There are three main approaches to clocking multi-rate systems

3) Clock all logic with highest-rate clock
 - Utilize small simple counters that load registers or route signals on only certain clock edges (for example, every fourth clock edge for $freq/4$).
 - Counters must be reset simultaneously and reset signal must meet timing requirements at the highest frequency.
 - Definitely the simplest and most robust
 - Design in only this way in this class

Enable = 1 every fourth cycle is equivalent to using $freq/4$