DSSS

Direct Sequence Spread Spectrum (DSSS)

- Example modulating two symbols
- Data
- Code 7
- 01101001
- Modulated code

Direct Sequence Spread Spectrum (DSSS)

- Time Domain:

Spread rate $=\mathrm{N} \bullet$ Bit Rate

- Frequency Domain:

Transmit bandwidth $=\mathrm{N} \bullet$ Data bandwidth

[Sam Sheng, 1999]

Direct Sequence Spread Spectrum (DSSS)

- Transmission (spreading)
- Each receiver assigned a unique orthogonal code
- Reception (despreading)
- Done by correlation of the received signal with a synchronized replica of the spreading signal to recover transmitted data bits

Walsh Codes

- Length-8 Walsh code matrix
- Built by recursively applying the Hadamard transform

0	0	0	0	0	0	0	0	unused
0	1	0	1	0	1	0	1	code 1
0	0	1	1	0	0	1	1	code 2
0	1	1	0	0	1	1	0	
0	0	0	0	1	1	1	1	
0	1	0	1	1	0	1	0	
0	0	1	1	1	1	0	0	
0	1	1	0	1	0	0	1	code 7

- Shown here with elements [0,1], but do math with $[-1,+1]$

Example Symbol I 7 users, Walsh 8 codes

- Input data (7 users)

$$
\begin{array}{llllllll}
\bullet & -1 & 1 & -1 & 1 & 1 & 1 & -1
\end{array}
$$

- Output waveform

$$
\begin{array}{cccccccc}
-1 & -5 & -1 & 3 & 3 & -1 & 3 & -1
\end{array}
$$

- Received data

$$
\begin{array}{llllllll}
-8 & 8 & -8 & 8 & 8 & 8 & -8
\end{array}
$$

Example Symbol I 7 users, Walsh 8 codes

- Input data (7 users)

$$
\begin{array}{llllllll}
\bullet & -1 & 1 & -1 & 1 & 1 & 1 & -1
\end{array}
$$

- Output waveform

$$
\begin{array}{cccccccc}
-1 & -5 & -1 & 3 & 3 & -1 & 3 & -1
\end{array}
$$

- Output waveform + noise

$$
\begin{array}{cccccccc}
+3 & -5 & -1 & 3 & 3 & -1 & 3 & -1
\end{array}
$$

- Received data

$$
\begin{array}{llllllll}
-8 & -8 & -8 & 8 & 8 & 8 & -8
\end{array}
$$

Example Symbol II 7 users, Walsh 8 codes

- Input data

$$
\begin{array}{llllllll}
-1 & 1 & -1 & -1 & -1 & -1 & -1
\end{array}
$$

- Output waveform

$$
\begin{array}{llllllll}
3 & -1 & -1 & 3 & -5 & -1 & -1 & 3
\end{array}
$$

- Received data
$\begin{array}{lllllll}-8 & 8 & -8 & -8 & -8 & -8 & -8\end{array}$

CDMA Code Properties

- Spreading codes should have special properties
- 1) Autocorrelation as similar to an impulse as possible
- One peak when a code is correlated against copies of itself
- Multipath resilience
- 00110011

00110011
00110011

CDMA Code Properties

- Spreading codes should have special properties
- 2) Crosscorrelation as small as possible for pairs of codes
- Want codes to be independent or orthogonal with respect to each other
- Multiple user separation
- One user's transmission on its code results in a net reception of approximately 0 on other codes
- code 1

01010101
code 2
00110011

Example CDMA "Reverse Link" (cell phone -> cell tower)

Orthogonal Signal

CDMA Example: IS-95

- Digital cellular system combines CDMA and FDMA
- Forward link (tower -> phone) different than reverse link
- (Reverse link transmissions not synchronized)
- Uses $869-894 \mathrm{MHz}$ (reverse) and $824-849 \mathrm{MHz}$ (forward) bands
- Signal bandwidth $1.25 \mathrm{MHz}, 0.27 \mathrm{MHz}$ guard band
- Chip rate 1.2288 Mchips/s
- Orthogonal length-64 Walsh codes used for forward link (spreading factor of 64)

CDMA Transmit Samples

- Length-8 Walsh codes, 7 users, 1000 symbols
- Discrete valued samples [-7, +7]
- Odd values only

Baseband Transmit Spectrum

- abs(fft(waveform))
- 8000 frequency "bins" result in noisy approximation
- Remember the sampling frequency $\left(f_{s}\right)$ is 2π in the digital frequency domain

Baseband Transmit Spectrum

- psd(waveform)
- fewer frequency "bins"
- Note spectrum is zero at DC

$\pi / 2$

2x Upsampled Transmit Spectrum

- Note null at DC now at π (one half f_{s}) also

4x Upsampled Transmit Spectrum

- Null at DC now at $\pi / 2, \pi$, and $3 \pi / 2$ (not shown)

