FASTER CARRY-PROPAGATE
ADDERS



Faster Carry-Propagate Adders

* The entire goal to make faster adders is to resolve the carry
across the entire adder structure more quickly

e It should be perplexing at first glance how this could be possible
given the dependence of every output bit on the LSB input bits
e A few common faster CPAs:
1) Carry Select
— Speculatively add and select later
2) Carry Lookahead
— Look at how a carry propagates through a group of bits
3) Conditional-sum (recursive carry select)
4) Carry skip
5) Other parallel prefix adders
e Kogge-Stone, 1973
* Brent-Kung, 1982
e etc.



1) Carry Select Adder

Break ripple adder into pieces

Compute each sub-block (except the one covering the
least-significant bits) twice: once assuming the carry
input is a “0” and once assuming the input is a “1”

Each sub-block computes 1) sum bits and 2) a single
carry bit

A mux selects correct sum+carry bits when the
previous block’s carry-out (the carry-in of the block
containing the mux) is known

This method can be sped up further with a
hierarchical structure (conditional-sum)



2) Carry Lookahead Adder

Break ripple adder into pieces
Look at the bits inside of each piece and decide two things based
only on the input operands and independent of the sub-block’s carry-in

— Will this sub-block generate a carry-out regardless of the carry-in
(generate)

— Will the carry-out be equal to the value of the carry-in (propagate)
— Other variations include a condition to stop a carry (kill)

In the simplest form, the carry-out can be calculated by,
C,,p = Generate OR (Propagate AND c;,)

Key point: Each sub-block pre-examines the input operand bits
and gets ready for fast carry-out calculation

There are a number of more complicated variations

This method can be sped up further with a hierarchical
structure



2) Carry Lookahead Adder

e When is Generate =17
— Whenc;, =0andc,, ;=1
— Whena+b={c,,,
— For example, a[3:0] + b[3:0] = Ixxxx with ¢;, =0

— It will be true that Generate=1 when c;,,=1 and c,, =1, but
that is not sufficient to show the cases when Generate =1

sum/} = {1xxx...xxx} with c¢;, =0

* When is Propagate = 1?
— Whena+b={c,,, sum}={0111...111}
— For example, a[3:0] + b[3:0] = 01111



