FASTER CARRY-PROPAGATE ADDERS

Faster Carry-Propagate Adders

- The entire goal to make faster adders is to resolve the carry across the entire adder structure more quickly
- It should be perplexing at first glance how this could be possible given the dependence of every output bit on the LSB input bits
- A few common faster CPAs:

1) Carry Select

- Speculatively add and select later

2) Carry Lookahead

- Look at how a carry propagates through a group of bits

3) Conditional-sum (recursive carry select)
4) Carry skip
5) Other parallel prefix adders

- Kogge-Stone, 1973
- Brent-Kung, 1982
- etc.

1) Carry Select Adder

- Break ripple adder into pieces
- Compute each sub-block (except the one covering the least-significant bits) twice: once assuming the carry input is a " 0 " and once assuming the input is a " 1 "
- Each sub-block computes 1) sum bits and 2) a single carry bit
- A mux selects correct sum+carry bits when the previous block's carry-out (the carry-in of the block containing the mux) is known
- This method can be sped up further with a hierarchical structure (conditional-sum)

2) Carry Lookahead Adder

- Break ripple adder into pieces
- Look at the bits inside of each piece and decide two things based only on the input operands and independent of the sub-block's carry-in
- Will this sub-block generate a carry-out regardless of the carry-in (generate)
- Will the carry-out be equal to the value of the carry-in (propagate)
- Other variations include a condition to stop a carry (kill)
- In the simplest form, the carry-out can be calculated by,

$$
c_{\text {out }}=\text { Generate OR }\left(\text { Propagate AND } c_{\text {in }}\right)
$$

- Key point: Each sub-block pre-examines the input operand bits and gets ready for fast carry-out calculation
- There are a number of more complicated variations
- This method can be sped up further with a hierarchical structure

2) Carry Lookahead Adder

- When is Generate $=1$?
- When $c_{\text {in }}=0$ and $c_{\text {out }}=1$
- When $\mathrm{a}+\mathrm{b}=\left\{c_{\text {out }}\right.$, sum $\}=\{1 \mathrm{xxx} \ldots \mathrm{xxx}\}$ with $c_{\text {in }}=0$
- For example, $\mathrm{a}[3: 0]+\mathrm{b}[3: 0]=1 \mathrm{xxxx}$ with $c_{\text {in }}=0$
- It will be true that Generate $=1$ when $c_{\text {in }}=\mathbf{1}$ and $c_{\text {out }}=1$, but that is not sufficient to show the cases when Generate $=1$
- When is Propagate $=1$?
- When $\mathrm{a}+\mathrm{b}=\left\{c_{\text {out }}\right.$, sum $\}=\{0111 \ldots 111\}$
- For example, $\mathrm{a}[3: 0]+\mathrm{b}[3: 0]=01111$

