
FASTER CARRY-PROPAGATE
ADDERS



© B. Baas 109

Faster Carry-Propagate Adders

• The entire goal to make faster adders is to resolve the carry 
across the entire adder structure more quickly

• It should be perplexing at first glance how this could be possible 
given the dependence of every output bit on the LSB input bits

• A few common faster CPAs:
1) Carry Select

− Speculatively add and select later

2) Carry Lookahead

− Look at how a carry propagates through a group of bits

3) Conditional-sum (recursive carry select)

4) Carry skip

5) Other parallel prefix adders

• Kogge-Stone, 1973

• Brent-Kung, 1982

• etc.



© B. Baas 110

1) Carry Select Adder

• Break ripple adder into pieces

• Compute each sub-block (except the one covering the 
least-significant bits) twice: once assuming the carry 
input is a “0” and once assuming the input is a “1”

• Each sub-block computes 1) sum bits and 2) a single 
carry bit

• A mux selects correct sum+carry bits when the 
previous block’s carry-out (the carry-in of the block 
containing the mux) is known

• This method can be sped up further with a 
hierarchical structure (conditional-sum)



© B. Baas 111

2) Carry Lookahead Adder

• Break ripple adder into pieces

• Look at the bits inside of each piece and decide two things based 
only on the input operands and independent of the sub-block’s carry-in

– Will this sub-block generate a carry-out regardless of the carry-in 
(generate)

– Will the carry-out be equal to the value of the carry-in (propagate)

– Other variations include a condition to stop a carry (kill)

• In the simplest form, the carry-out can be calculated by,
cout = Generate OR (Propagate AND cin)

• Key point: Each sub-block pre-examines the input operand bits 
and gets ready for fast carry-out calculation

• There are a number of more complicated variations 

• This method can be sped up further with a hierarchical 
structure



© B. Baas 112

2) Carry Lookahead Adder

• When is Generate = 1?
– When cin = 0 and cout = 1

– When a + b = {cout , sum} = {1xxx…xxx} with cin = 0 

– For example, a[3:0] + b[3:0] = 1xxxx with cin = 0 

– It will be true that Generate = 1 when cin = 1 and cout = 1, but 
that is not sufficient to show the cases when Generate = 1

• When is Propagate = 1?
– When a + b = {cout , sum} = {0111…111}

– For example, a[3:0] + b[3:0] = 01111


