EFFICIENT MULTI-INPUT ADDITION (CARRY-SAVE)

Building Efficient Multiple-input Adders

1. Figure out: algorithm, format conversion if needed, word alignment, sign extension, rounding, etc.
2. Draw "dot diagram" of inputs (one dot per bit)
3. Cover with carry-save adder blocks as appropriate
4. Repeat step \#3 until there are two output terms
5. Calculate final result with CPA (carry-propagate adder)
6. Things to check (as a reminder)

- Output width sufficient
- Inputs sign extended if necessary
- Only calculate necessary output bits

3:2 Adder Row

- Compresses 3 words (4-bit a, b, c in this example) to two words

3:2 Adder Row

- No "sideways" carry signals to a neighboring 3:2 adder even though it would be correct logically (it would cause a slow ripple)
- Having said that, it is ok if limited to a small number of ripples in special cases

4:2 Adder Row

- Compresses 4 words (4-bit a, b, c, d in this example) to two words

4:2 Adder Row

- Remember ci and co signals on the ends of the row of 4:2 adders

Carry-save Adder Building Blocks

- Notice that to eliminate or "compress" one dot requires approximately 1 "Full adder of hardware"
- A 4:2 adder can be made with two full adders

Carry-save Adder Building Blocks: Half Adder

- Half adder
- | A | B | C | S |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

- $S=\operatorname{XOR}\left(i n_{0}, i n_{1}\right)$ $C=\operatorname{AND}\left(i n_{0}, i n_{1}\right)$
- 2 dots $\rightarrow 2$ dots
- No compression! of dots but can still be very useful for moving dots
- Approximately "0.5 FA" hardware

Carry-save Adder

 Example, Solution 1- Example using 4:2 adders
- Inputs: 8 words with hypothetical group of bits in the three LSBs (could be caused by rounding)
- Output: 12-bit, singleword
- Requires 12-bit CPA for the final adder

Carry-save Adder

 Example, Solution 2- Uses half adders
- The final CPA is now a 10 -bit adder instead of 12 -bit
- Even if a smaller 10-bit CPA adder is not used, a 12-bit adder with this dot diagram will be faster than with the Solution 1 dot diagram due to " 0 " inputs into LSB bits which results in a shorter longest (critical) path
- Faster circuits are usually also smaller and lower power
- Typically Synthesis tools will simplify circuits with constant (0 or 1) inputs

Sign Extension for Multiple-Input Addition

- Example: add four 8-bit numbers with three sign extension bits each (11-bit result). In reality, the sum of four 8 -bit numbers needs to be only 10 bits, but we choose 11 here to illustrate a point.
- In this example, we focus only on optimizing the first stage which consists of only carry-save addition
sign

Sign Extension for Multiple-Input Addition

- Method \#0: Straightforward solution with a row of 4:2 carry-save adders
- c0 \rightarrow cin "sideways" connections are made between all 4:2s

Sign Extension for Multiple-Input Addition

- To be more efficient than the straightforward solution, notice that the input bits in the 4 MSB columns are the same
- It would be inefficient to calculate the same output multiple times
- Although the 4 inputs are the same, the ci bit is not the same......for one of the $4: 2 \mathrm{~s}$!
- Recall that the "side" carry-out is a function of only the four 4:2 inputs shown in the diagram below as w, x, y, z. It is by design not a function of the $c i$ bit.

Sign Extension for Multiple-Input Addition

- Method \#1a: Use one 4:2 and replicate its output; but ci can not be used-so all four columns will be the same
- There is a huge drawback - the output is in three terms, not two, so this method requires a second stage of carry-save adders
- Is is hard to imagine when the $c i$ input could be useful in this example. We tie it to zero here.

Sign Extension for Multiple-Input Addition

- Method \#1b: Use two 4:2s and replicate output of left 4:2
- All four MSB 4:2s have the same side co $(\neq \mathrm{f}(c i))$
- Must keep right 4:2 since its sum and c1.(■ bélow) depend on a different $c i$ than the other three $4: 2 s^{\prime} c i$ inputs

Sign Extension for Multiple-Input Addition

- Simplification method \#2
- Look at one sign-extended word
- There are two cases for the sign-extension bits: 0 or 1
- We want
- 0000 when the MSB $=0$

1111 when the MSB = 1

- Note

$$
\begin{array}{rlr}
-\quad 0000= & 1111 \\
& +\quad 1 \\
-\quad 1111= & 1111 \\
- & & +\quad 0
\end{array}
$$

Sign Extension for Multiple-Input Addition

Two cases:

$$
\begin{array}{llllllllllll}
\mathrm{w}_{7}=0: & 0 & 0 & 0 & 0 & \mathrm{w}_{6} & \mathrm{w}_{5} & \mathrm{w}_{4} & \mathrm{w}_{3} & \mathrm{w}_{2} & \mathrm{w}_{1} & \mathrm{w}_{0} \\
\mathrm{w}_{7}=1: & 1 & 1 & 1 & 1 & \mathrm{w}_{6} & \mathrm{w}_{5} & \mathrm{w}_{4} & \mathrm{w}_{3} & \mathrm{w}_{2} & \mathrm{w}_{1} & \mathrm{w}_{0}
\end{array}
$$

Substitute: $\quad \begin{array}{lllll}1 & 1 & 1 & 1\end{array}$

$$
\overline{\mathrm{W}_{7}} \quad \mathrm{~W}_{6} \quad \mathrm{~W}_{5} \quad \mathrm{w}_{4} \quad \mathrm{w}_{3} \quad \mathrm{w}_{2} \quad \mathrm{w}_{1} \quad \mathrm{w}_{0}
$$

- Looks like we made it worse: 1 row $\rightarrow 2$ rows; but it gets better...

Sign Extension for Multiple-Input Addition

- Simplify all input words similarly

$$
\begin{array}{ccccc}
1 & 1 & 1 & 1 & \\
1 & 1 & 1 & 1 & \\
1 & 1 & 1 & 1 & \\
+1 & 1 & 1 & \frac{1}{1} & \\
& & & \frac{\mathrm{w}_{7}}{\mathrm{x}_{7}} & \cdots \\
& & & \cdots \\
& & & \frac{\mathrm{Y}_{7}}{\mathrm{Z}_{7}} & \cdots \\
& & \cdots
\end{array}
$$

Sign Extension for Multiple-Input Addition

- Rule: Never use hardware to add constants together
- The four constants can be pre-added in this case

Sign Extension for Multiple-Input Addition

Sign Extension for Multiple-Input Addition

Finally,

- Rule: Never use hardware to add a zero to anything

Sign Extension for Multiple-Input Addition

The dot diagram with no dot in column 8 (LSB = [0], MSB = [10]),

