BOOTH ENCODING OF THE "MULTIPLIER" INPUT

Booth Encoding

- Method to reduce the number of partial products
- Named after Andrew Booth (1918-2009) who published the algorithm in 1951 while at Birkbeck College, London
- Booth-n
- Examines $n+1$ bits of the multiplier
- Encodes n bits
- $n \times$ reduction in the number of partial products
- But partial products must then be more complex than simply 0 or +multiplicand

Partial Product
Array

Booth Encoding: Booth-2 or "Modified Booth"

- Can view the multiplier as being built of strings of 1's
- Examine multiplier bits Y_{i+1}, Y_{i}, and Y_{i-1}
- Perspective of moving right to left towards the MSB
- There are $\left\lfloor\frac{N+2}{2}\right\rfloor=\left\lfloor\frac{N}{2}+1\right\rfloor$ partial products in the worst case

Y_{i+1}	Y_{i}	Y_{i-1}	Partial product	Comment
0	0	0	0	no string of 1's
0	0	1	$+x$	end of string of 1's
0	1	0	$+x$	a string of 1's
0	1	1	$+2 x$	end of string of 1's
1	0	0	$-2 x$	beginning of string of 1's
1	0	1	$-x$	$-2 x+x$
1	1	0	$-x$	beginning of string of 1's
1	1	1	0	center of string of 1's

Booth Encoding: Booth-2 or "Modified Booth"

- There are five possible partial products compared to two with non-Booth encoding

$$
\begin{gathered}
+2 x \\
+x \\
0 \\
-x \\
-2 x
\end{gathered}
$$

Y_{i+1}	Y_{i}	Y_{i-1}	Partial product	Comment
0	0	0	0	no string of 1's
0	0	1	$+x$	end of string of 1's
0	1	0	$+x$	a string of 1's
0	1	1	$+2 x$	end of string of 1's
1	0	0	$-2 x$	beginning of string of 1's
1	0	1	$-x$	$-2 x+x$
1	1	0	$-x$	beginning of string of 1's
1	1	1	0	center of string of 1's

Booth Encoding: Booth-2 or "Modified Booth"

- Fortunately, these five possible partial products are very easy to generate
- Correctly
$+x$
$+2 x$
 generating the $-x$ and $-2 x$ PPs requires a little care
- The key issue is to not separate the

1) negation and
2) adding " 1 " LSB operations during the inversion process

Booth Encoding: Booth-2 or "Modified Booth"

- Example: multiplier $=0010=2$
- Add 0 to the right of the LSB since the first group has no group with which to overlap
- Examine 3 bits at a time
- Encode 2 bits at a time
\rightarrow Overlap one bit between partial products

Booth Encoding: Booth-2 or "Modified Booth"

- Example: multiplier $=1001=-7$
- Add 0 to the right of the LSB since the first group has no group with which to overlap
- Examine 3 bits at a time
- Encode 2 bits at a time
\rightarrow Overlap one bit between partial products

Booth Encoding: Booth-2 or "Modified Booth"

- Example: multiplier $=01111111=+127$
- Nice example of encoding a long string of 1's
- Examine 3 bits at a time
- Encode 2 bits at a time

s	s	s	s	s	s	$-x$						
s	s	s	s		0					0	0	
s	s			0					0	0	0	0
		$+2 x$				0	0	0	0	0	0	0

$64 \times(+2 x)+16 \times(0)+4 \times(0)-x$
$=+127 x$

Booth Encoding: Booth-2 or "Modified Booth"

- Example: multiplier $=10100110=-90$
- Examine 3 bits at a time
- Encode 2 bits at a time

$64 \times(-x)+16 \times(-2 x)+4 \times(+2 x)-2 x$

$$
=-90 x
$$

Booth Encoding: Booth-2 or "Modified Booth"

- (Left side) End of a string of 1's

- (Right side) Beginning of a string of 1's

Booth Encoding: Booth-3

Y_{i+2}	Y_{i+1}	Y_{i}	Y_{i-1}	Partial product
0	0	0	0	0
0	0	0	1	$+x$
0	0	1	0	$+x$
0	0	1	1	$+2 x$
0	1	0	0	$+2 x$
0	1	0	1	$+3 x$
0	1	1	0	$+3 x$
0	1	1	1	$+4 x$
1	0	0	0	$-4 x$
1	0	0	1	$-3 x$
1	0	1	0	$-3 x$
	0	1	1	$-2 x$
	1	0	0	$-2 x$
	1	0	1	$-x$
	1	1	0	$-x$
	1	1	1	0

