
BOOTH ENCODING OF THE
“MULTIPLIER” INPUT

B. Baas 117

Booth Encoding

• Method to reduce the number of partial products

• Named after Andrew Booth (1918-2009) who published the
algorithm in 1951 while at Birkbeck College, London

• Booth-n

– Examines n+1 bits of the multiplier

– Encodes n bits

– n × reduction in the number of partial products

• But partial products must then be more complex than simply
0 or +multiplicand

Partial-

Product

Array

m
u
l
t
i
p
l
i
e
r

Partial Product

Array

m
u
l
t
i
p
l
i
e
r

B. Baas 118

Booth Encoding:
Booth-2 or “Modified Booth”

Yi+1 Yi Yi-1 Partial product Comment

0 0 0 0 no string of 1’s

0 0 1 +x end of string of 1’s

0 1 0 +x a string of 1’s

0 1 1 +2x end of string of 1’s

1 0 0 –2x beginning of string of 1’s

1 0 1 – x –2x + x

1 1 0 – x beginning of string of 1’s

1 1 1 0 center of string of 1’s

[Waser and Flynn]

• Can view the multiplier as being built of strings of 1’s

– Examine multiplier bits Yi+1, Yi, and Yi-1

– Perspective of moving right to left towards the MSB

• There are 𝑁+2

2
= 𝑁

2
+ 1 partial products in the worst case

B. Baas 119

Booth Encoding:
Booth-2 or “Modified Booth”

Yi+1 Yi Yi-1 Partial product Comment

0 0 0 0 no string of 1’s

0 0 1 +x end of string of 1’s

0 1 0 +x a string of 1’s

0 1 1 +2x end of string of 1’s

1 0 0 –2x beginning of string of 1’s

1 0 1 – x –2x + x

1 1 0 – x beginning of string of 1’s

1 1 1 0 center of string of 1’s

[Waser and Flynn]

• There are five possible
partial products compared
to two with non-Booth
encoding

+2x

+x

0

–x

–2x

B. Baas 120

Booth Encoding:
Booth-2 or “Modified Booth”

• Fortunately, these
five possible partial
products are very
easy to generate

• Correctly
generating the
–x and –2x PPs
requires a little care

– The key issue is to
not separate the
1) negation and
2) adding “1” LSB
operations during
the inversion
process

multiplicand 0

s

0

multiplicand

0

~multiplicand 1

~s

1

~multiplicand

1

0 0

0

–2x

–x

0

+2x

+x

B. Baas 121

Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 0010 = 2
– Add 0 to the right of the LSB since the first group has no

group with which to overlap

– Examine 3 bits at a time

– Encode 2 bits at a time

 Overlap one bit between partial products

– 2x

+x 0 0 1 0 0

–2x

+x

s

0

s

0

4 × (+x) –2x

= +2x

B. Baas 122

Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 1001 = –7
– Add 0 to the right of the LSB since the first group has no

group with which to overlap

– Examine 3 bits at a time

– Encode 2 bits at a time

 Overlap one bit between partial products

+x

–2x 1 0 0 1 0

+x

–2x

s

0

s

0

4 × (–2x) +x

= –7x

B. Baas 123

Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 01111111 = +127
– Nice example of encoding a long string of 1’s

– Examine 3 bits at a time

– Encode 2 bits at a time

0

+2x

0 1 1 1 1 1 1 1 0

+2x

–x

s

0

s

0

64 × (+2x) + 16 × (0) + 4 × (0) – x

= +127x

0

0

0s s

–xs ss s

s s

s s

00

00

00

00

00

B. Baas 124

Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 10100110 = –90
– Examine 3 bits at a time

– Encode 2 bits at a time

–2x

–x

1 0 1 0 0 1 1 0 0

–x

–2x

s

0

s

0

64 × (–x) + 16 × (–2x) + 4 × (+2x) – 2x

= – 90x

–2x

+2x

+2xs s

–2xs ss s

s s

s s

00

00

00

00

00

B. Baas 125

Booth Encoding:
Booth-2 or “Modified Booth”

• (Left side) End of a string of 1’s

• (Right side) Beginning of a string of 1’s

0 1 1 1 1 1 1 1

+2x

0

0

0 0 1 1 1 1 1 1

+x

0

0

......

1 1 1 1 1 0 0

–2x

0

0

...1 1 1 1 1 1 0

–x

0

0

...

B. Baas 126

Booth Encoding: Booth-3

Yi+2 Yi+1 Yi Yi-1 Partial product

0 0 0 0 0

0 0 0 1 +x

0 0 1 0 +x

0 0 1 1 +2x

0 1 0 0 +2x

0 1 0 1 +3x

0 1 1 0 +3x

0 1 1 1 +4x

1 0 0 0 –4x

1 0 0 1 –3x

1 0 1 0 –3x

1 0 1 1 –2x

1 1 0 0 –2x

1 1 0 1 –x

1 1 1 0 –x

1 1 1 1 0 [Waser and Flynn]

