BOOTH ENCODING OF THE
"MULTIPLIER" INPUT

Booth Encoding

Method to reduce the number of partial products

Named after Andrew Booth (1918-2009) who published the
algorithm in 1951 while at Birkbeck College, London

Booth-n

— Examines n+1 bits of the multiplier

— Encodes n bits

— n x reduction in the number of partial products
But partial products must then be more complex than simply
0 or +multiplicand

B o
. Partial Product
Partial- =
Product % — Array
Array 5
a1

aoTTdT3TNW

Booth Encoding:
Booth-2 or "Modified Booth”

e Can view the multiplier as being built of strings of 1’s

— Examine multiplier bits Y;,;, Y;, and Y, 4
— Perspective of moving right to left towards the MSB

e There are |*2| = |¥ + 1| partial products in the worst case

Y. Y; Y, Partial product ~ Comment

0 0 0 0 no string of 1’s

0 0 1 +x end of string of 1’s

0 1 0 +x a string of 1’s

0 1 1 +2x end of string of 1’s

1 0 0 —2x beginning of string of 1’s
1 0 1 - X —2x+x

1 1 0 - X beginning of string of 1’s
1 1 1 0 center of string of 1’s

[Waser and Flynn]

Booth Encoding:
Booth-2 or "Modified Booth”

* There are five possible

i +2X
partial products compared +x
to two with non-Booth 0
encoding —X
—2X
Y Y; Yi; Partial product ~ Comment
0 0 0 0 no string of 1’s
0 0 1 +x end of string of 1’s
0 1 0 +x a string of 1’s
0 1 1 +2x end of string of 1’s
1 0 0 —2x beginning of string of 1’s
1 0 1 - X —2x +x
1 1 0 - X beginning of string of 1’s
1 1 1 0 center of string of 1’s

[Waser and Flynn]

Booth Encoding:
Booth-2 or "Modified Booth”

e Fortunately, these

five possible partial +2x multiplicand

products are very
easy to generate

e Correctly +X S multiplicand
generating the
—x and —2x PPs
requires a little care 0 0

— The key issue is to
not separate the

1) negation and
2) adding “1” LSB

—X ~S ~multiplicand

operations during
the inversion

process —2X ~multiplicand

Booth Encoding:
Booth-2 or “"Modified Booth”

e Example: multiplier = 0010 = 2
— Add 0 to the right of the LSB since the first group has no
group with which to overlap
— Examine 3 bits at a time
— Encode 2 bits at a time

—> Overlap one bit between partial products

— —2X
S|S — 2X 1
X olo 001@0

4 x (+X) —2X

= +2X

Booth Encoding:
Booth-2 or “"Modified Booth”

e Example: multiplier = 1001 = -7
— Add 0 to the right of the LSB since the first group has no

group with which to overlap
— Examine 3 bits at a time
— Encode 2 bits at a time

—> Overlap one bit between partial products

+X
S
S|s +X I
oy 10010
\l I 1
—2X
4 x (—2X) +X

— /X

Booth Encoding:
Booth-2 or “"Modified Booth”

e Example: multiplier =01111111 = +127

— Nice example of encoding a long string of 1’s
— Examine 3 bits at a time

— Encode 2 bits at a time

S[s|s —X 0 X
S|S 0 0|0 [|
: oTololol 211111110

+2X ololofololo|] *2x O

64 x (+2x) + 16 x (0) + 4 x (0) — x
= +127xX

Booth Encoding:
Booth-2 or “"Modified Booth”

e Example: multiplier = 10100110 =-90

— Examine 3 bits at a time

— Encode 2 bits at a time

S|S|S —2X 9% —2X
S|S +2X 0/0 [|
— oTololol (L01,001100

X olololofojo] —Xx *2x

64 x (—X) + 16 x (—2Xx) +4 % (+2X) — 2X
= — 90x

Booth Encoding:
Booth-2 or “"Modified Booth”

o (Left side) End of a string of 1’s

0 0
PR PR
IOOlllllllll IOllllllllll
+X 0 +2X 0

* (Right side) Beginning of a string of 1’s

0 0
1 | |
1111110 1111100,

0 —X 0 —2x

Booth-3

Partial product

Booth Encoding

+X

+X
+2x
+2x
+3x
+3x
+4x
—4x
—3x
—3x
—2x
—2x

[Waser and Flynn]

Yig

Yi+1

Yi+2

