
BOOTH ENCODING OF THE 
“MULTIPLIER” INPUT
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Booth Encoding

• Method to reduce the number of partial products

• Named after Andrew Booth (1918-2009) who published the 
algorithm in 1951 while at Birkbeck College, London

• Booth-n

– Examines n+1 bits of the multiplier

– Encodes n bits

– n × reduction in the number of partial products

• But partial products must then be more complex than simply 
0  or  +multiplicand
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Booth Encoding:
Booth-2 or “Modified Booth”

Yi+1 Yi Yi-1 Partial product Comment

0 0 0 0 no string of 1’s

0 0 1 +x end of string of 1’s

0 1 0 +x a string of 1’s 

0 1 1 +2x end of string of 1’s

1 0 0 –2x beginning of string of 1’s

1 0 1 – x –2x + x

1 1 0 – x beginning of string of 1’s 

1 1 1 0 center of string of 1’s

[Waser and Flynn]

• Can view the multiplier as being built of strings of 1’s

– Examine multiplier bits Yi+1, Yi, and Yi-1

– Perspective of moving right to left towards the MSB

• There are 𝑁+2

2
= 𝑁

2
+ 1 partial products in the worst case
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Booth Encoding:
Booth-2 or “Modified Booth”

Yi+1 Yi Yi-1 Partial product Comment

0 0 0 0 no string of 1’s

0 0 1 +x end of string of 1’s

0 1 0 +x a string of 1’s 

0 1 1 +2x end of string of 1’s

1 0 0 –2x beginning of string of 1’s

1 0 1 – x –2x + x

1 1 0 – x beginning of string of 1’s 

1 1 1 0 center of string of 1’s

[Waser and Flynn]

• There are five possible 
partial products compared 
to two with non-Booth 
encoding
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Booth Encoding:
Booth-2 or “Modified Booth”

• Fortunately, these 
five possible partial 
products are very 
easy to generate

• Correctly 
generating the 
–x and –2x PPs 
requires a little care

– The key issue is to 
not separate the 
1) negation and 
2) adding “1” LSB 
operations during 
the inversion 
process
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Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 0010 = 2
– Add 0 to the right of the LSB since the first group has no 

group with which to overlap

– Examine 3 bits at a time

– Encode 2 bits at a time

 Overlap one bit between partial products

– 2x
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Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 1001 = –7
– Add 0 to the right of the LSB since the first group has no 

group with which to overlap

– Examine 3 bits at a time

– Encode 2 bits at a time

 Overlap one bit between partial products
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Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 01111111 = +127
– Nice example of encoding a long string of 1’s

– Examine 3 bits at a time

– Encode 2 bits at a time
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Booth Encoding:
Booth-2 or “Modified Booth”

• Example: multiplier = 10100110 = –90
– Examine 3 bits at a time

– Encode 2 bits at a time
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Booth Encoding:
Booth-2 or “Modified Booth”

• (Left side) End of a string of 1’s

• (Right side) Beginning of a string of 1’s
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Booth Encoding: Booth-3

Yi+2 Yi+1 Yi Yi-1 Partial product

0 0 0 0 0

0 0 0 1 +x

0 0 1 0 +x

0 0 1 1 +2x

0 1 0 0 +2x

0 1 0 1 +3x

0 1 1 0 +3x

0 1 1 1 +4x

1 0 0 0 –4x

1 0 0 1 –3x

1 0 1 0 –3x

1 0 1 1 –2x

1 1 0 0 –2x

1 1 0 1 –x

1 1 1 0 –x

1 1 1 1 0 [Waser and Flynn]


