FLOATING POINT

$$
\begin{aligned}
& \text { <---> } \\
& \text { FIXED POINT } \\
& \text { CONVERSION }
\end{aligned}
$$

Floating Point \rightarrow Fixed Point Conversion

- If the \exp is unsigned, the shifter shifts only to the left
- If the exp is signed, the shifter must shift to the left and right
- Example:

$$
\begin{array}{r}
01011 . * 2^{2} \\
01011 . \ll 2 \\
000101100 .
\end{array}
$$

mantissa exp

shifter
fixed point

Fixed Point \rightarrow Floating Point Conversion

- Leading 0s/1s detector finds the optimum place to begin selecting bits for the mantissa
- Common pitfall: If the mantissa is signed, its sign bit(s) must be maintained!
fixed point

Fixed Point \rightarrow Floating Point Conversion

- Fixed-to-float conversion example (positive input)
- Input: 8-bit 2's complement (signed) integer Output: 4-bit 2's complement (signed) mantissa
a) integer mantissa

b) fractional " 0.4 format" mantissa

Fixed Point \rightarrow Floating Point Conversion

- Fixed-to-float conversion example (negative input)
- Input: 8-bit 2's complement (signed) integer Output: 4-bit 2's complement (signed) mantissa
a) integer mantissa

```
S
b) fractional " 2.2 format" mantissa

\section*{Fixed Point \(\rightarrow\) Floating Point Conversion Special Cases}
- Example 1: converting a fixed-point zero

\section*{00000000}
- Clearly, the selection of mantissa bits does not matter \(\rightarrow\) it will be all zeros
- But then what should the exponent be?
- In absolute terms it does not matter
- Choose whatever makes the hardware more regular and simpler
- Example 2: converting a string of 1's to FloatPt with a 4-bit mantissa

- We have at least tyo main approaches to selecting the mantissa bits which in general do not affect accuracy
- 1) Choose mantissa after removing the max number of redundant sign bits 1000. \(\times 2^{\wedge}(-3)=-8 \times(1 / 8)=-1\)
- 2) Choose mantissa to preserve as many bits as possible while removing the max number of redundant sign bits 1111. x \(2^{\wedge} 0=-1 \times 1=-1\)
- Choose whichever method makes the hardware more regular and simpler```

