FLOATING POINT

Floating Point Number Components

$$
\text { sign } \times \text { mantissa } \times \text { base } e^{\text {exp_sign } \times(\exp -\text { bias })}
$$

- sign (optional) determines the sign of the overall number
- mantissa can take many forms
- unsigned, sign magnitude, 2's complement
- integer, full fractional <1, mixed integer.fractional
- base is normally fixed in a particular usage and is commonly 2
- it is not explicitly stored or transmitted
- other common values include a power-of-2 and 10
- \exp can also take the same forms
- unsigned, sign magnitude, 2's complement
- integer, full fractional <1, mixed integer.fractional
- exp_sign (optional) determines the sign of the exponent
- bias (optional) has advantages in enabling faster comparisons
© в. Baabetween floating point numbers

Floating Point Arithmetic

- Multiplication
- Relatively straightforward because the mantissa and exponent can be processed independently
- Addition and Subtraction
- More complex because the mantissas require alignment before addition or subtraction can begin
- All arithmetic operations
- Require normalization after the arithmetic is complete

Floating Point Storage and Transmittal

mantissa * base exponent
sign * mantissa * base exponent

- We normally never explicitly store or transmit the base; only the other values:
(MMMMMMMM, EEEEE)
($\left.\mathrm{S}_{\text {MAN }}, ~ M M M M M M M M, ~ E E E E E\right)$
($S_{\text {MAN }}, ~ M M M M M M M M, ~ S_{\text {EXP }}, ~ E E E E E$)
- For example, if the exponent is stored as a 4-bit 2's complement integer:

$00010 . ~ * 2^{\wedge} 0$	$(00010,0000)$
$00101 . ~ * 2^{\wedge}(-1)$	$(00101,1111)$

Floating Point Example All 8-bit Unsigned Numbers

a) fixed-point integer XXXXXXXX.
range [0-255]
resolution or smallest step size $=1$
b) fixed-point " 4.4 format" fractional XXXX.XXXX
range [0-15 15/16] = [0-15.9375]
resolution $=1 / 16=0.0625$
c) floating-point 4-bit integer mantissa, 4-bit 2's complement exponent
$[0-15] \times 2^{[-8-+7]}$
When exp $=-8 \quad$ range [0-0.0586] resolution 0.0039
When exp $=0$
range [0-15] resolution 1
When $\exp =+7$
range [0-1920] resolution 128

Normalization example with an Integer Mantissa

- Normalized floating point numbers contain no extra (useful) bits at the MSB end of the mantissa
- Examples for 2.75_{10} with an unsigned 5-bit integer mantissa: 00010. * 2^0 not normalized, or "denormalized" 00101. * 2^(-1) not normalized, or "denormalized" 01011. * 2^(-2) not normalized, or "denormalized" 10110. * 2^(-3) normalized
- A good starting point in such problems is to first consider the original value in fixed point which is 10.11 or 010.1100 etc., in this case
- To keep this example simple, bits in the original value of 2.75 that do not fit into the mantissa (i.e., the first two cases) are dropped or truncated, which is not as accurate as rounding

Normalization example with a 0.5 Fractional Mantissa

- Normalized floating point numbers contain no extra (useful) bits at the MSB of the mantissa
- Examples for 2.75_{10} with an unsigned 5-bit " 0.5 format" fractional mantissa:
.00010 * 2^(+5) not normalized, or "denormalized"
.00101 * $2^{\wedge}(+4)$ not normalized, or "denormalized"
.01011 * $2^{\wedge}(+3)$ not normalized, or "denormalized" .10110 * $2^{\wedge}(+2)$ normalized
- If the exponent is stored as a 4-bit 2's complement integer, these 4 examples would be stored as:
(MMMMM, EEEE)
(00010,0101)
(00101,0100)
(01011,0011)
©в. Baas $(10110,0010)$

Normalization example with a 2's Complement Mantissa

- Normalized floating point numbers contain no extra (useful) bits at the MSB end of the mantissa
- Examples for $+2.75_{10}$ with a $\mathbf{2}^{\prime}$ s complement 5 -bit integer mantissa:
$00010 . * 2^{\wedge} 0$
$00101 . * 2^{\wedge}(-1)$
$01011 . * 2^{\wedge}(-2)$
$10110 . * 2^{\wedge}(-3)$
not normalized, or "denormalized" not normalized, or "denormalized" normalized

10110. * 2 (-3)

Broken! Lost sign bit

Normalization example with a 2's Complement Mantissa

- Normalized floating point numbers contain no extra (useful) bits at the MSB end of the mantissa
- Examples for $\mathbf{- 2 . 7 5} 10$ with a 2's complement 5-bit integer mantissa
- First calculate the value in fixed point:
$-2.75_{10}=101.010=(-4)+(1)+(1 / 4)$
- Then calculate cases with various exponent values:
$11101 . * 2^{\wedge} 0$
$11010 . * 2^{\wedge}(-1)$
$10101 . * 2^{\wedge}(-2)$
$01010 . * 2^{\wedge}(-3)$
not normalized, or "denormalized" not normalized, or "denormalized" normalized

1010. * 2^(-3) Broken! Lost sign bit
