GENERATING COMPLEX FUNCTIONS

Generating Complex Functions

- Complex or "arbitrary" functions are not uncommon
- Examples
- sin, cos, tan
- tangent $^{-1}$
$-\log$
$-e^{x}$
- A/D converter correction values
- RF mixer bias currents

Generating Complex Functions 1) High-precision Numerical Calculations

- Almost certainly requires many clock cycles per calculation
- 1-2 bits per clock cycle is common. In some cases, more bits/cycle are possible by adding hardware
- Can regain throughput by parallel implementations
- However latency is unavoidable
- Ex: CORDIC (Coordinate Rotation Digital Computer)
- Ex: polynomial expansions, etc.

Generating Complex Functions 2) Lookup Table

A. ROM array memory

- "Real" memory with address decoder, wordlines, bitlines, sense amplifiers, etc.
- Frequently available as macros
 from the standard cell vendor
- Could be mask-defined at manufacture, one-time programmable with fuses or anti-fuses, or flash nonvolatile memory
- Generally compares better with very large tables since ROM cells are among the densest of all CMOS structures and there is a significant amount of overhead circuitry for a small memory

Generating Complex Functions 2) Lookup Table

B. Synthesized from standard cell combinational logic

- The "memory" block is implemented by a highly-optimized netlist of combinational logic gates
- Generally compares better with data that is less random (in an entropy information-theory sense) because it results in simpler and smaller logic equations
- See notes describing ROM memories

Input and Output Word Widths and Total Memory Size

- Total memory size
$=2^{\text {address_read_width }} \times$ data_width
- The overall best word widths are a complex function of factors such as:

$$
\text { address_read } \longrightarrow \text { Memory }
$$

- Overall system accuracy (e.g., SNR) requirements
- Effect of word widths of particular signals on the overall system accuracy
- Choice of numerical algorithms (e.g., table lookup and/or numerical methods)
- Available SRAM and ROM technologies

Input and Output Word Width Effects

- Input word width
- A narrow-word-width lookup table input increases the quantization granularity
- Example: cos(theta[2:0])

Input and Output Word Width Effects

- Output word width
- A narrow-word-width lookup table input increases the quantization granularity
- Example: y[2:0] $=\cos$ (theta)

Output 3 bits: -3 -> +3

$\cos ($ angle)

matlab for previous plots

- copy, paste, and try it out

wordwidth.m

2020/03/06 Written (BB)

Bug: matlab isn't adding the title and axes labels unless those commands are copied \& pasted by hand; I can't figure out why!

```
clear;
%--- Set these
PrintOn = 1;
x = 0:0.01:pi;
%--- Main
figure(1); clf;
title('Output 3 bits: -3 -> +3');
xlabel('0');
ylabel('cos(0)');
Scale = 3.5;
y = Scale * cos(x);
plot(x, y, 'r--'); hold on;
y = round(Scale * cos(x));
plot(x, y, 'b.'),
plot(x, zeros(1,length(x)), k--'); % black line
axis([0 pi -1.05*Scale 1.05*Scale]);
grid on;
if PrintOn print -dpng quant.out.png; end
figure(2); clf;
title('Input 3 bits: (0 -> 2\pi)/8');
xlabel('0').
ylabel('cos(0)');
Scale = 3.5;
y = Scale * cos(x);
plot(x, y, 'r--'); hold on;
x1 = x/pi;; % now [0 - 1]
```



```
x3 = round (x2); %
x4 = x3/7*pi; % [0 - pi]
y = Scale * cos(x4);
plot(x, y, 'b ').
plot(x, zeros(1,length(x)), 'k--'); % black line
plot(x, zeros(1,1ength(x), ',k-- (%);
axis([0 p
grid on;
if Printon print -dpng quant.in.png;

\section*{Lookup Tables with Cascaded Functions}
- In many cases, computation is expressed or can be transformed into cascaded functions
- Example: The angle of a rectangular 2D vector \(=\tan ^{-1}(y / x)\)
- A straightforward implementation using lookup tables would use a table for division followed by a table for \(\tan ^{-1}()\)
- A better implementation would merge the cascaded functions into a single \(\tan ^{-1}(y / x)\)
 function implemented with a single memory
- Assuming the intermediate result \(y / x\) is not needed elsewhere
- In both cases, the input address is the concatenated address \(=\{x, y\}\) or \(\{y, x\}\); in fact, the bits from \(x\) and \(y\) can be mixed arbitrarily although the two examples here are certainly the clearest
```

