
GENERATING COMPLEX
FUNCTIONS

© B. Baas 307

Generating Complex Functions

• Complex or “arbitrary” functions are not uncommon

• Examples
– sin, cos, tan

– tangent-1

– log

– ex

– A/D converter correction values

– RF mixer bias currents

sin/costheta
out_real

out_imag

© B. Baas 308

Generating Complex Functions
1) High-precision Numerical Calculations

• Almost certainly requires many clock cycles
per calculation
– 1–2 bits per clock cycle is common. In some cases, more

bits/cycle are possible by adding hardware

– Can regain throughput by parallel implementations

– However latency is unavoidable

• Ex: CORDIC (Coordinate Rotation Digital
Computer)

• Ex: polynomial expansions, etc.

© B. Baas 309

Generating Complex Functions
2) Lookup Table

A. ROM array memory
– “Real” memory with address

decoder, wordlines, bitlines,
sense amplifiers, etc.

– Frequently available as macros
from the standard cell vendor

– Could be mask-defined at manufacture, one-time
programmable with fuses or anti-fuses, or flash non-
volatile memory

– Generally compares better with very large tables since
ROM cells are among the densest of all CMOS structures
and there is a significant amount of overhead circuitry
for a small memory

Memoryangle

cos(angle)

© B. Baas 310

Generating Complex Functions
2) Lookup Table

B. Synthesized from standard
cell combinational logic

– The “memory” block is
implemented by a
highly-optimized netlist of
combinational logic gates

– Generally compares better with
data that is less random
(in an entropy information-theory
sense) because it results in simpler and smaller logic
equations

– See notes describing ROM memories

Memoryangle

cos(angle)

© B. Baas 311

Input and Output Word Widths and
Total Memory Size

• Total memory size

= 2 address_read_width × data_width

• The overall best word widths
are a complex function of factors
such as:
– Overall system accuracy (e.g., SNR)

requirements

– Effect of word widths of particular signals on
the overall system accuracy

– Choice of numerical algorithms
(e.g., table lookup and/or numerical methods)

– Available SRAM and ROM technologies

Memoryaddress_read

data_read

data_write

a
d
d
re

ss
_
re

a
d

2

Input and Output Word Width
Effects

• Input word width
– A narrow-word-width lookup table input

increases the quantization granularity

– Example: cos(theta[2:0])

© B. Baas 312

Memoryangle

cos(angle)

3

Input and Output Word Width
Effects

• Output word width
– A narrow-word-width lookup table input

increases the quantization granularity

– Example: y[2:0] = cos(theta)

© B. Baas 313

Memoryangle

cos(angle)

3

matlab for
previous plots

• copy, paste, and try
it out

© B. Baas 314

% wordwidth.m

%

% 2020/03/06 Written (BB)

%

% Bug: matlab isn't adding the title and axes labels unless those commands are

% copied & pasted by hand; I can't figure out why!

clear;

%--- Set these

PrintOn = 1;

x = 0:0.01:pi;

%--- Main

figure(1); clf;

title('Output 3 bits: -3 -> +3');

xlabel('\theta');

ylabel('cos(\theta)');

Scale = 3.5;

y = Scale * cos(x);

plot(x, y, 'r--'); hold on;

y = round(Scale * cos(x));

plot(x, y, 'b.');

plot(x, zeros(1,length(x)), 'k--'); % black line

axis([0 pi -1.05*Scale 1.05*Scale]);

grid on;

if PrintOn print -dpng quant.out.png; end

figure(2); clf;

title('Input 3 bits: (0 -> 2\pi)/8');

xlabel('\theta');

ylabel('cos(\theta)');

Scale = 3.5;

y = Scale * cos(x);

plot(x, y, 'r--'); hold on;

x1 = x/pi; % now [0 - 1]

x2 = x1 * 7; % not ideal, [0 - 7]

x3 = round(x2); %

x4 = x3/7*pi; % [0 - pi]

y = Scale * cos(x4);

plot(x, y, 'b.');

plot(x, zeros(1,length(x)), 'k--'); % black line

axis([0 pi -1.05*Scale 1.05*Scale]);

grid on;

if PrintOn print -dpng quant.in.png; end

© B. Baas 315

Lookup Tables with Cascaded Functions

• In many cases, computation is expressed or
can be transformed into cascaded functions

• Example: The angle of a rectangular 2D
vector = tan–1(y/x)

• A straightforward implementation using
lookup tables would use a table for division
followed by a table for tan–1()

• A better implementation would merge the
cascaded functions into a single tan–1(y/x)
function implemented with a single memory

– Assuming the intermediate result y/x is not
needed elsewhere

– In both cases, the input address is the
concatenated address = {x, y} or {y, x}; in fact,
the bits from x and y can be mixed arbitrarily
although the two examples here are certainly
the clearest

Memory

tan-1(x/y)
{real,imag}

angle

Memory

x/y
{real,imag}

Address

Read

Data Memory

tan-1(•)

angle

