BINARY MULTIPLICATION

Multipliers

- Multiplies are widely used in digital signal processing, generally more so than in general-purpose workloads
- Major categories of multiplier types
 - Unsigned × Unsigned
 Also very useful for sign-magnitude data
 - Signed 2's complement × Signed 2's complement
 Very useful for fixed-point 2's complement data
- Hardware is typically built in a manner broadly similar to how you would do it with paper and pencil
- The naming convention is somewhat unfortunate:

multiplicand multiplier

X

Multipliers

- Example: 4-bit unsigned *multiplicand "a"* times 4-bit *multiplier "b"*
- *b* could be signed or unsigned

•
$$p_{xy} = a_x \times b_y$$

= a_x AND b_y

			a_3	a_2	a_1	a_0	
		×	b_3	b_2	b_1	b_0	
			p_{30}	p_{20}	p_{10}	p_{00}	$\leftarrow b_0$
		p_{31}	p_{21}	<i>p</i> ₁₁	p_{01}	0	$\leftarrow b_1$
	p_{32}	p_{22}	p_{12}	p_{02}	0	0	$\leftarrow b_2$
p_{33}	p_{23}	p_{13}	p_{03}	0	0	0	$\leftarrow b_3$

© B. Baas 184

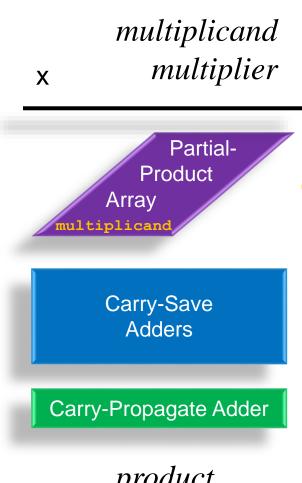
Multipliers

- Example: 4-bit signed 2's complement *multiplicand* "a" times 4-bit *multiplier* "b"
- *b* could be signed or unsigned
- s = partial product sign extension bits

185

3 Main Steps in Every Multiplier

- Generation of partial products
- Reduction or "compression" of the partial product array (normally using carry-save addition) so that the product is composed of two words
 - Linear array addition
 - Tree addition (Wallace tree)
- Final adder: Carry-propagate adder 3) (CPA)
 - Converts the product in carry-save form into a single word form
 - Any style of CPA is fine though we probably favor faster ones



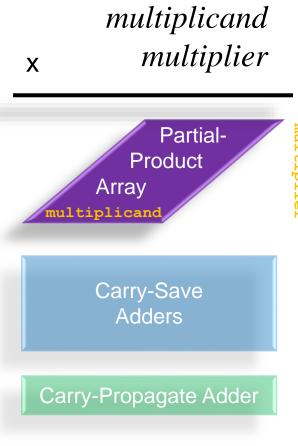
product

© B. Baas

Straight-forward Partial Product Generation

- This is the simplest method to generate partial products
- Hardware looks at one bit of the $multiplier(Y_i)$ at a time
- Partial products are copies of the multiplicand AND'd by bits of the multiplier
- Number of bits in the *multiplier*
 - = Number of partial products
 - = Number of terms/words/rows that must be added

Y_i	Partial product
0 1	0 +x (= multiplicand)



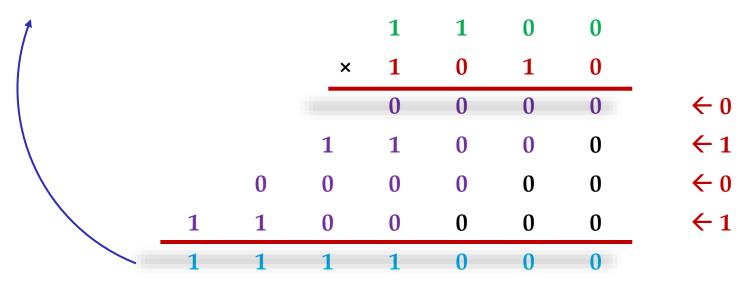
Straight-forward Partial Product Generation

- There are only two possible partial product results
- Two reasonable hardware solutions are:
 - a row of 2:1 muxes with zeros on one input
 - a row of AND gates (this should be more efficient)

Partial product	Y_{i}
0	0
+x (= multiplicand)	1

Example unsigned 4-bit × 4-bit multiplication

- Example: 4-bit unsigned *multiplicand "a"* 1100 times 4-bit *multiplier "b"* 1010
- $1100 \times 1010 = 12 \times 10 = 120$
- $1100 \times 1010 = (12 \times 8) + (12 \times 0) + (12 \times 2) + (12 \times 0) = 120$
- 1111000 = 64 + 32 + 16 + 8 = 120



189

Example 2's complement 4-bit × 4-bit multiplication

- Example: 4-bit signed 2's complement *multiplicand "a"* 1100 times 4-bit *multiplier "b"* 1010
- $1100 \times 1011 = -4 \times -5 = +20$
- $1100 \times 1011 = (-4 \times -8) + (-4 \times 0) + (-4 \times 2) + (-4 \times 1) = +20$
- 00010100 = 16 + 4 = +20 \odot

1					1	1	0	0	
				×	1	0	1	1	
	1	1	1	1	1	1	0	0	←1
	1	1	1	1	1	0	0	0	←1
	0	0	0	0	0	0	0	0	← 0
	0	1	1	0	$\frac{1}{0}$	0	0	0	←1
	0	0	0	1	0	1	0	0	

© B. Baas