
VERILOG 5:
TESTING

“If you don’t test it, it isn’t going to work” 

- Mark Horowitz
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Testing

• Hardware blocks  (*.v)

– Will be synthesized into hardware circuits

• Testing blocks  (*.vt OR  *_tb.v OR  tb_*.v)

– Also called the “testbench”

– Pretty much any code is ok

– However it should always be clear

• Instantiate hardware inside the testbench; drive 
inputs and check outputs there

abc.v

xyz.v

add.v

top_tb.v OR  top.vt

top.v

test 

generator 

code



See 
Sutherland 
handout, 

page 38, for 
details on 
printing 
format 

specifiers
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Verilog Code in Testbenches

• Examples of verilog code that are ok in 
testbenches but not ok in hardware modules 
in this class unless you are told otherwise

– “#” delay statements are essential in testing 
modules and should never be in hardware (except 
for “clock to Q” delays in D FFs)

– “signed” regs and wires are extremely useful for 
printing 2’s complement signals

– “integer” variables for “for loops”, and counters

– “for” loops
– $write(“format”, var1, var2, ...)

// writes text to screen or file using the specified 
// format with optional variables. Example:
// $write("in = %b, out1 = %b, ", in, out1);
// $write("out2 = %b, out3 = %b", out2, out3);
// $write("\n");

– $display(“format”, var1, var2, ...)

// same as $write except it adds a \n new line
// automatically. I generally prefer $write so I can add
// my \n exactly when I want it at the end of a series of
// $write statements.

abc.v

xyz.v

add.v

top_tb.v OR  top.vt

top.v

test 

generator 

code
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Verilog Code in Testbenches

• Examples of verilog code that are ok in 
testbenches but not ok in hardware modules 
in this class unless you are told otherwise
– @(posedge clock); // only for testbenches when

@(negedge clock); // used as a standalone
// statement that waits for the
// next positive or negative
// edge of “clock” in this case

– repeat (50)  @(posedge clk);

// the “repeat” statement can
// be very handy for
// repeatedly executing a
// statement (or a block of 
// statements)

abc.v

xyz.v

add.v

top_tb.v OR  top.vt

top.v

test 

generator 

code
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Verilog Code in Testbenches

• Examples of verilog code that are ok in 
testbenches but not ok in hardware modules 
in this class unless you are told otherwise
– $stop; // Halts the simulation.

// This is probably the better one to use
// for Modelsim because $finish causes
// Modelsim to ask if you really want to
// quit the simulator which is probably
// not what you want.

– $finish; // Ends the simulation.
// This is probably the better one to use
// for Cadence and Synopsys verilog
// simulators running by command line
// on linux because $stop causes the
// simulator to drop back to an 
// interactive command line prompt
// rather than the linux command line.

abc.v

xyz.v

add.v

top_tb.v OR  top.vt

top.v

test 

generator 

code
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Verilog Code in Testbenches

• Examples of verilog code that may appear in 
either testbench modules or hardware 
modules
– `timescale time_unit base / precision base

// The first argument specifies “#1” delay. The
// second argument specifies the precision with 
// which delays may be specified.
// Base values may be 1, 10, 100, or 1000; and its units
//     may be {s,ms,us,ns,ps,fs}
// Ex: `timescale 1ns/10ps

– Cadence NC Verilog simulator
• Requirement: `timescale must be at the top of the first 

file listed in the .vf file

• Best case: place `timescale at the top of the .vt file, 
and list the .vt at the top of your .vf

• Alternatively: place `timescale at the top of every .v 
and .vt file

– Modelsim simulator
• Put a `timescale command as the first line in your 

top-level testbench file (e.g., top_tb.v).  No need to put 
it in any of your hardware modules.

abc.v

xyz.v

add.v

top_tb.v OR  top.vt

top.v

test 

generator 

code
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Testbench Design: Approach 1
Basic Flow

• All signals 
including the 
clock are 
generated by 
test code in 
the test module

• The approach 
is easier and 
quicker to set 
up compared 
to approach #2

• But it is cumbersome for 
testbenches requiring a very 
large numbers of test cases

abc.v

xyz.v

add.v

top.v

test 

generator 

code

initial begin

in    = 4'b0000;

clk = 1’b0;

reset = 1’b1;

#100; clk=1’b1; #100; clk=1’b0;

reset = 0;

#100; clk=1’b1; #100; clk=1’b0;

in    = 4'b0001;

#100; clk=1’b1; #100; clk=1’b0;

in    = 4'b1010;

#100; clk=1’b1; #100; clk=1’b0;

...

$stop;

end

clk
data

inputs

top_tb.v OR  top.vt
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Testbench Design: Approach 1
Basic Flow

• An Approach 1 example 
testbench including $write( )

abc.v

xyz.v

add.v

top.v

test 

generator 

code

initial begin

in    = 4'b0000;

clk = 1’b0;

reset = 1’b1;

in2   = 8’hA5;

#100; clk=1’b1; #100; clk=1’b0;  // 1 clk

$write("in = %b, out = %b\n", in, out);

reset = 0;

#100; clk=1’b1; #100; clk=1’b0;  // 1 clk

$write("in = %b, out = %b\n", in, out);

in    = 4'b0001;

#100; clk=1’b1; #100; clk=1’b0;  // 1 clk

$write("in = %b, out = %b\n", in, out);

in    = 4'b1010;

#100; clk=1’b1; #100; clk=1’b0;  // 1 clk

$write("in = %b, out = %b\n", in, out);

...

$stop;

end

clk
data

inputs

top_tb.v OR  top.vt
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Testbench Design: Approach 2
Basic Flow

• Both the “test” block and the 
“hardware” block are 
coordinated by the same 
clock signal which is 
generated by an independent 
clock oscillator module in the 
test module

• Better for more complex 
systems

• Adds some realism in the 
timing of input and output 
signals

abc.v

xyz.v

add.v

top.v

test 

generator 

code
clock

osc

top_tb.v OR  top.vt
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Testbench Design: Approach 2
Example Clock Oscillator

• This code is error prone because two 
different blocks set the reg clock. To avoid 
a problem, the initial block sets clock at 
time=0 and the second block waits until 
time=100 and later to set clock

• A better design would use a reset signal 
to initialize clock

abc.v

xyz.v

add.v

top.v

test 

generator 

code

reg clock;

initial begin

clock = 1’b0;   // must initialize

...

#10000;         // main simulation

...

$stop;          // stop simulation

end

// osc inverts clock value every #100

always begin

#100;           // cycle time = #200

clock = ~clock; // invert clock

end

top_tb.v OR  top.vt

clock

osc

clock

0 100 200 300 400
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Testbench Design: Approach 2
Example Clock Oscillator

• This code more cleanly sets clock in only 
one always block

• In this implementation, reset takes effect 
only at the end of a clock phase, not in 
the middle of one

abc.v

xyz.v

add.v

top.v

test 

generator 

code

reg clock;

initial begin

reset = 1’b1;   // assert reset

#1000;          // perhaps a few cycles

reset = 1’b0;   // de-assert reset

...

#10000;         // main simulation

...

$stop;          // stop simulation

end

// osc inverts clock value every #100

always begin

if (reset == 1’b1) begin

clock = 1’b0;

#1;   // let time advance when reset == 1'b1
end

else begin

#100;           // cycle time = #200

clock = ~clock; // invert clock

end

end

top_tb.v OR  top.vt

clock

osc

clock
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Testbench Design: Approach 2
Example Test Generator

• Here is an example of how 
code in the test generator 
could look:

abc.v

xyz.v

add.v

top.v

test 

generator 

code
initial begin

reset = 1’b1;          // set reset

data  = 8’h00;

#500;                  // wait > 1 clk period

reset = 1’b0;          // clear reset

// #10 after clk edge is clk-to-Q delay

@(posedge clock); #10; // next clock edge

data  = 8’hB3;

@(posedge clock); #10; // next clock edge

data  = 8’h0F;

@(posedge clock); #10; // next clock edge

data  = 8’hB7;

@(posedge clk);  #10

@(posedge clk);  #10

repeat (50) @(posedge clk); // wait 50 clks

$stop;                 // stop simulation

end

top_tb.v OR  top.vt

clock

osc
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Verifying Hardware Correctness

• A number of ways to verify designs:
1) Eyeball text printouts

• Quickest and easiest

2) Eyeball waveforms

• Quick and easy for some simple designs

3) “Golden Reference” approach. Write 
target reference code and verify it matches 
your hardware design.

• This is the most robust and is required for 
non-trivial designs

• As designs become more complex, 
verifying their correctness becomes 
more difficult

abc.v

checker

abc_ref.v

pass/fail

“Golden 

reference”
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Verifying Hardware Correctness

3) The Golden Reference
– Write an easy to understand simple model in a higher-level 

language

• C or matlab commonly

– Matlab is a natural choice for DSP applications 

• Must be written in a different way from the verilog 
implementation to avoid repeating the same bugs

– Designers agree the golden reference is the correct function 
(imagine your colleagues critiquing your code in a design 
review)

– Many high-level tests must be run on the golden reference to 
verify that it is correct

• Model should be fast

• Imagine days of simulations on tens or hundreds of computers
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Comparing with the 
Golden Reference

• There are two major approaches to comparing with the Golden Reference:

A. Hardware and Reference must be “Bit-accurate“ or “Bit-perfect” 
or “Bit-true”

• Hardware must match golden reference exactly, bit for bit, cycle by cycle

+ Very easy to automate the comparison

+ Likely less testing will be needed than approach (B)

– The Golden Reference must now do awkward operations such as rounding and 
saturation that exactly match the hardware

o For example, floor(in + 0.5) for rounding of 2’s complement numbers

B. Hardware and Reference must be “close”

+ Golden Reference is simpler to write and has higher confidence

– Inadequate for control hardware which must be a perfect match

– Likely more testing will be needed than approach (A)

• Example: calculate and compare the Signal-to-Noise Ratio (SNR) of the hardware 
vs. reference comparison

– Comparisons could be complex and imperfect. For example, imagine how many 
ways two 5-minute audio signals could vary by 0.1% from each other. An 
imperceptible amplitude difference or a 3-second crash.



Golden Reference Approach: 
The Checker

• Implementing the “checker” comparison tool

A. Bit-accurate: comparisons could be done using:

• the verilog testbench itself

• matlab

• the built-in “diff” command in linux 

• many other options

B. “Close enough” comparisons

• matlab is a good place to look first

• To check the checker, at some point an error 
should be introduced in either the hardware 
design or the golden reference to verify the 
checker catches it
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abc.v

checker

abc_ref.v

pass/fail

“Golden 

reference”



Golden Reference Approach: 
Example with Matlab Ref. and Checker

• Matlab is a fine choice for implementing the reference 
model and the checker
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matlab

HW

reference 

model
match?

input

copy

out

verilog

input

data

for

testing

matlab

checker

verilog,

matlab,

or file,....

verilog

HW

Verilog

simulator
Matlab

simulator

verilog

testbench



Sources of Input Test Data

1) From a data file on disk
– For example, from a video sequence

2) From data generated by a script
– For example, all values 0–65,535 for a block with 16 binary 

inputs

– Input data may be generated from either matlab or 
verilog. I think it's a little easier to generate input 
data in verilog and then print both input and output 
to a matlab-readable *.m file and test and compare 
in matlab

• It can sometimes be a little awkward to read data from a file in 
verilog

– You may find it handy to declare variables as signed in 
verilog and print them using $fwrite so both positive and 
negative numbers print correctly
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% data.m

a(1) = 23;

a(2) = 456;

a(3) = 92;

a(4) = 4738;

...



Sources of Input Test Data

• Example data generated by verilog, then imported into matlab
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>> verilog_data

>> whos

Name    Size   Bytes  Class     Attributes

a       4x3    96  double

input   1x5    40  double

>> input

input =

-23     2    -9    93     1

>> a

a =

5     9    -1

0     5    -8

4    -2     5

0    -1    -5

>>

% verilog_data.m

%

% Data file printed by a verilog simulation test bench.

%

% The data is printed in such a manner that the data

% may be loaded into matlab by simply typing in matlab:

%

% >> verilog_data

input(1) = -23;

input(2) = 2;

input(3) = -9;

input(4) = 93;

input(5) = 1;

a(1,1) = 5;

a(1,2) = 9;

a(1,3) = -1;

a(2,1) = 0;

a(2,2) = 5;

a(2,3) = -8;

a(3,1) = 4;

a(3,2) = -2;

a(3,3) = 5;

a(4,1) = 0;

a(4,2) = -1;

a(4,3) = -5;



Generating Test Cases

1) Exhaustive
– Example: a 16-bit adder has 32 inputs, so 2^32 (4.3 billion) 

possible inputs.  71 minutes @ 1 million tests/sec

– Example: a 32-bit adder would require 584,942 years 
@ 1 million tests/sec!

– On the positive side, when you are done, you know your 
circuit is 100.000% correct

2) Directed—choose corner or edge cases by hand
– Example: 8-bit + 8-bit signed 2’s complement adder

• 0+0, 0+1, 1+0, 0+(–1), (–1)+0

• (–1)+(–1) = 11111111 + 11111111

• 127+127 = 01111111 + 01111111

• (–128)+(–128) = 10000000 + 10000000
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Generating Test Cases

3) Random
– The test environment automatically generates random input 

test cases, possibly with some direction

– It is almost always a good idea to make results repeatable to 
permit debugging of errors

• Avoid: “it failed after a week of testing but now it works fine 
and I can not find the case that failed!”

• Run short batches of tests

• The random input data of each batch is determined by a 
random seed

– Run random tests on as much hardware as you can afford

– Run random tests as long as the schedule permits
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Recommended Directory and 
File Layout (EEC 180B)
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