
VERILOG 5:
TESTING

“If you don’t test it, it isn’t going to work”

- Mark Horowitz

© B. Baas
109

Testing

• Hardware blocks (*.v)

– Will be synthesized into hardware circuits

• Testing blocks (*.vt OR *_tb.v OR tb_*.v)

– Also called the “testbench”

– Pretty much any code is ok

– However it should always be clear

• Instantiate hardware inside the testbench; drive
inputs and check outputs there

abc.v

xyz.v

add.v

top_tb.v OR top.vt

top.v

test

generator

code

See
Sutherland
handout,

page 38, for
details on
printing
format

specifiers

© B. Baas
110

Verilog Code in Testbenches

• Examples of verilog code that are ok in
testbenches but not ok in hardware modules
in this class unless you are told otherwise

– “#” delay statements are essential in testing
modules and should never be in hardware (except
for “clock to Q” delays in D FFs)

– “signed” regs and wires are extremely useful for
printing 2’s complement signals

– “integer” variables for “for loops”, and counters

– “for” loops
– $write(“format”, var1, var2, ...)

// writes text to screen or file using the specified
// format with optional variables. Example:
// $write("in = %b, out1 = %b, ", in, out1);
// $write("out2 = %b, out3 = %b", out2, out3);
// $write("\n");

– $display(“format”, var1, var2, ...)

// same as $write except it adds a \n new line
// automatically. I generally prefer $write so I can add
// my \n exactly when I want it at the end of a series of
// $write statements.

abc.v

xyz.v

add.v

top_tb.v OR top.vt

top.v

test

generator

code

© B. Baas
111

Verilog Code in Testbenches

• Examples of verilog code that are ok in
testbenches but not ok in hardware modules
in this class unless you are told otherwise
– @(posedge clock); // only for testbenches when

@(negedge clock); // used as a standalone
// statement that waits for the
// next positive or negative
// edge of “clock” in this case

– repeat (50) @(posedge clk);

// the “repeat” statement can
// be very handy for
// repeatedly executing a
// statement (or a block of
// statements)

abc.v

xyz.v

add.v

top_tb.v OR top.vt

top.v

test

generator

code

© B. Baas
112

Verilog Code in Testbenches

• Examples of verilog code that are ok in
testbenches but not ok in hardware modules
in this class unless you are told otherwise
– $stop; // Halts the simulation.

// This is probably the better one to use
// for Modelsim because $finish causes
// Modelsim to ask if you really want to
// quit the simulator which is probably
// not what you want.

– $finish; // Ends the simulation.
// This is probably the better one to use
// for Cadence and Synopsys verilog
// simulators running by command line
// on linux because $stop causes the
// simulator to drop back to an
// interactive command line prompt
// rather than the linux command line.

abc.v

xyz.v

add.v

top_tb.v OR top.vt

top.v

test

generator

code

© B. Baas
113

Verilog Code in Testbenches

• Examples of verilog code that may appear in
either testbench modules or hardware
modules
– `timescale time_unit base / precision base

// The first argument specifies “#1” delay. The
// second argument specifies the precision with
// which delays may be specified.
// Base values may be 1, 10, 100, or 1000; and its units
// may be {s,ms,us,ns,ps,fs}
// Ex: `timescale 1ns/10ps

– Cadence NC Verilog simulator
• Requirement: `timescale must be at the top of the first

file listed in the .vf file

• Best case: place `timescale at the top of the .vt file,
and list the .vt at the top of your .vf

• Alternatively: place `timescale at the top of every .v
and .vt file

– Modelsim simulator
• Put a `timescale command as the first line in your

top-level testbench file (e.g., top_tb.v). No need to put
it in any of your hardware modules.

abc.v

xyz.v

add.v

top_tb.v OR top.vt

top.v

test

generator

code

© B. Baas
114

Testbench Design: Approach 1
Basic Flow

• All signals
including the
clock are
generated by
test code in
the test module

• The approach
is easier and
quicker to set
up compared
to approach #2

• But it is cumbersome for
testbenches requiring a very
large numbers of test cases

abc.v

xyz.v

add.v

top.v

test

generator

code

initial begin

in = 4'b0000;

clk = 1’b0;

reset = 1’b1;

#100; clk=1’b1; #100; clk=1’b0;

reset = 0;

#100; clk=1’b1; #100; clk=1’b0;

in = 4'b0001;

#100; clk=1’b1; #100; clk=1’b0;

in = 4'b1010;

#100; clk=1’b1; #100; clk=1’b0;

...

$stop;

end

clk
data

inputs

top_tb.v OR top.vt

© B. Baas
115

Testbench Design: Approach 1
Basic Flow

• An Approach 1 example
testbench including $write()

abc.v

xyz.v

add.v

top.v

test

generator

code

initial begin

in = 4'b0000;

clk = 1’b0;

reset = 1’b1;

in2 = 8’hA5;

#100; clk=1’b1; #100; clk=1’b0; // 1 clk

$write("in = %b, out = %b\n", in, out);

reset = 0;

#100; clk=1’b1; #100; clk=1’b0; // 1 clk

$write("in = %b, out = %b\n", in, out);

in = 4'b0001;

#100; clk=1’b1; #100; clk=1’b0; // 1 clk

$write("in = %b, out = %b\n", in, out);

in = 4'b1010;

#100; clk=1’b1; #100; clk=1’b0; // 1 clk

$write("in = %b, out = %b\n", in, out);

...

$stop;

end

clk
data

inputs

top_tb.v OR top.vt

© B. Baas
116

Testbench Design: Approach 2
Basic Flow

• Both the “test” block and the
“hardware” block are
coordinated by the same
clock signal which is
generated by an independent
clock oscillator module in the
test module

• Better for more complex
systems

• Adds some realism in the
timing of input and output
signals

abc.v

xyz.v

add.v

top.v

test

generator

code
clock

osc

top_tb.v OR top.vt

© B. Baas
117

Testbench Design: Approach 2
Example Clock Oscillator

• This code is error prone because two
different blocks set the reg clock. To avoid
a problem, the initial block sets clock at
time=0 and the second block waits until
time=100 and later to set clock

• A better design would use a reset signal
to initialize clock

abc.v

xyz.v

add.v

top.v

test

generator

code

reg clock;

initial begin

clock = 1’b0; // must initialize

...

#10000; // main simulation

...

$stop; // stop simulation

end

// osc inverts clock value every #100

always begin

#100; // cycle time = #200

clock = ~clock; // invert clock

end

top_tb.v OR top.vt

clock

osc

clock

0 100 200 300 400

© B. Baas
118

Testbench Design: Approach 2
Example Clock Oscillator

• This code more cleanly sets clock in only
one always block

• In this implementation, reset takes effect
only at the end of a clock phase, not in
the middle of one

abc.v

xyz.v

add.v

top.v

test

generator

code

reg clock;

initial begin

reset = 1’b1; // assert reset

#1000; // perhaps a few cycles

reset = 1’b0; // de-assert reset

...

#10000; // main simulation

...

$stop; // stop simulation

end

// osc inverts clock value every #100

always begin

if (reset == 1’b1) begin

clock = 1’b0;

#1; // let time advance when reset == 1'b1
end

else begin

#100; // cycle time = #200

clock = ~clock; // invert clock

end

end

top_tb.v OR top.vt

clock

osc

clock

© B. Baas
119

Testbench Design: Approach 2
Example Test Generator

• Here is an example of how
code in the test generator
could look:

abc.v

xyz.v

add.v

top.v

test

generator

code
initial begin

reset = 1’b1; // set reset

data = 8’h00;

#500; // wait > 1 clk period

reset = 1’b0; // clear reset

// #10 after clk edge is clk-to-Q delay

@(posedge clock); #10; // next clock edge

data = 8’hB3;

@(posedge clock); #10; // next clock edge

data = 8’h0F;

@(posedge clock); #10; // next clock edge

data = 8’hB7;

@(posedge clk); #10

@(posedge clk); #10

repeat (50) @(posedge clk); // wait 50 clks

$stop; // stop simulation

end

top_tb.v OR top.vt

clock

osc

© B. Baas 121

Verifying Hardware Correctness

• A number of ways to verify designs:
1) Eyeball text printouts

• Quickest and easiest

2) Eyeball waveforms

• Quick and easy for some simple designs

3) “Golden Reference” approach. Write
target reference code and verify it matches
your hardware design.

• This is the most robust and is required for
non-trivial designs

• As designs become more complex,
verifying their correctness becomes
more difficult

abc.v

checker

abc_ref.v

pass/fail

“Golden

reference”

© B. Baas 122

Verifying Hardware Correctness

3) The Golden Reference
– Write an easy to understand simple model in a higher-level

language

• C or matlab commonly

– Matlab is a natural choice for DSP applications

• Must be written in a different way from the verilog
implementation to avoid repeating the same bugs

– Designers agree the golden reference is the correct function
(imagine your colleagues critiquing your code in a design
review)

– Many high-level tests must be run on the golden reference to
verify that it is correct

• Model should be fast

• Imagine days of simulations on tens or hundreds of computers

© B. Baas 123

Comparing with the
Golden Reference

• There are two major approaches to comparing with the Golden Reference:

A. Hardware and Reference must be “Bit-accurate“ or “Bit-perfect”
or “Bit-true”

• Hardware must match golden reference exactly, bit for bit, cycle by cycle

+ Very easy to automate the comparison

+ Likely less testing will be needed than approach (B)

– The Golden Reference must now do awkward operations such as rounding and
saturation that exactly match the hardware

o For example, floor(in + 0.5) for rounding of 2’s complement numbers

B. Hardware and Reference must be “close”

+ Golden Reference is simpler to write and has higher confidence

– Inadequate for control hardware which must be a perfect match

– Likely more testing will be needed than approach (A)

• Example: calculate and compare the Signal-to-Noise Ratio (SNR) of the hardware
vs. reference comparison

– Comparisons could be complex and imperfect. For example, imagine how many
ways two 5-minute audio signals could vary by 0.1% from each other. An
imperceptible amplitude difference or a 3-second crash.

Golden Reference Approach:
The Checker

• Implementing the “checker” comparison tool

A. Bit-accurate: comparisons could be done using:

• the verilog testbench itself

• matlab

• the built-in “diff” command in linux

• many other options

B. “Close enough” comparisons

• matlab is a good place to look first

• To check the checker, at some point an error
should be introduced in either the hardware
design or the golden reference to verify the
checker catches it

© B. Baas 124

abc.v

checker

abc_ref.v

pass/fail

“Golden

reference”

Golden Reference Approach:
Example with Matlab Ref. and Checker

• Matlab is a fine choice for implementing the reference
model and the checker

© B. Baas 125

matlab

HW

reference

model
match?

input

copy

out

verilog

input

data

for

testing

matlab

checker

verilog,

matlab,

or file,....

verilog

HW

Verilog

simulator
Matlab

simulator

verilog

testbench

Sources of Input Test Data

1) From a data file on disk
– For example, from a video sequence

2) From data generated by a script
– For example, all values 0–65,535 for a block with 16 binary

inputs

– Input data may be generated from either matlab or
verilog. I think it's a little easier to generate input
data in verilog and then print both input and output
to a matlab-readable *.m file and test and compare
in matlab

• It can sometimes be a little awkward to read data from a file in
verilog

– You may find it handy to declare variables as signed in
verilog and print them using $fwrite so both positive and
negative numbers print correctly

© B. Baas 126

% data.m

a(1) = 23;

a(2) = 456;

a(3) = 92;

a(4) = 4738;

...

Sources of Input Test Data

• Example data generated by verilog, then imported into matlab

© B. Baas 127

>> verilog_data

>> whos

Name Size Bytes Class Attributes

a 4x3 96 double

input 1x5 40 double

>> input

input =

-23 2 -9 93 1

>> a

a =

5 9 -1

0 5 -8

4 -2 5

0 -1 -5

>>

% verilog_data.m

%

% Data file printed by a verilog simulation test bench.

%

% The data is printed in such a manner that the data

% may be loaded into matlab by simply typing in matlab:

%

% >> verilog_data

input(1) = -23;

input(2) = 2;

input(3) = -9;

input(4) = 93;

input(5) = 1;

a(1,1) = 5;

a(1,2) = 9;

a(1,3) = -1;

a(2,1) = 0;

a(2,2) = 5;

a(2,3) = -8;

a(3,1) = 4;

a(3,2) = -2;

a(3,3) = 5;

a(4,1) = 0;

a(4,2) = -1;

a(4,3) = -5;

Generating Test Cases

1) Exhaustive
– Example: a 16-bit adder has 32 inputs, so 2^32 (4.3 billion)

possible inputs. 71 minutes @ 1 million tests/sec

– Example: a 32-bit adder would require 584,942 years
@ 1 million tests/sec!

– On the positive side, when you are done, you know your
circuit is 100.000% correct

2) Directed—choose corner or edge cases by hand
– Example: 8-bit + 8-bit signed 2’s complement adder

• 0+0, 0+1, 1+0, 0+(–1), (–1)+0

• (–1)+(–1) = 11111111 + 11111111

• 127+127 = 01111111 + 01111111

• (–128)+(–128) = 10000000 + 10000000

© B. Baas 128

Generating Test Cases

3) Random
– The test environment automatically generates random input

test cases, possibly with some direction

– It is almost always a good idea to make results repeatable to
permit debugging of errors

• Avoid: “it failed after a week of testing but now it works fine
and I can not find the case that failed!”

• Run short batches of tests

• The random input data of each batch is determined by a
random seed

– Run random tests on as much hardware as you can afford

– Run random tests as long as the schedule permits

© B. Baas 129

Recommended Directory and
File Layout (EEC 180B)

© B. Baas 130

