Programmable DSP Architectures:

Part |

This two-part paper explores the architectural features of
single-chip programmable digital signal processors (DSPs)
that make their impressive performance possible. This part
discusses the most basic such feature, the integration of a
hardware multiplier/accumulator into the data path, and a
more subtle feature, the use of several (up to six) indepen-
dent memory banks. These features are studied in light of
the performance benefit and the impact on the user. Repre-
sentative DSPs from three manufacturers, AT&T, Motorola,
and Texas Instruments, are used to illustrate the ideas. It is
not the intent of the author to catalog available DSPs or
their features or to endorse particular manufacturers. It is
the intent to compare different solutions to the same prob-
lems. The second part, to appear in the next issue of ASSP
Magazine, discusses pipelining and makes some bold predic-
tions about the future of DSPs.

1. INTRODUCTION

ROGRAMMABLE DSPs are specialized microcomputers

for real-time number crunching. Target applications
require extensive arithmetic computation, usually with
hard real-time constraints. This two-part paper studies
the architectural techniques used to get the performance
that is required for such applications, and especially con-
centrates on the impact of these techniques on the user.
This impact is considerable because DSPs are tradition-
ally designed for performance, not extensive functional-
ity or programmer convenience.

Because of their specialized applications, program-
mable DSPs have evolved architectures that are signifi-
cantly different from conventional microprocessors. On
certain DSP-related benchmarks, their performance has
consistently exceeded that of microprocessors with arith-
metic co-processors by more than an order of magnitude
throughout their ten year history. This performance ad-
vantage is still evident today, although microprocessors
have improved dramatically and DSPs have acquired
many of their features.

A number of architectural innovations have been used
to achieve this impressive performance. The most basic is
the integration of fast multiplier/accumulator hardware

The views expressed in this paper are those of the author and do
not reflect an endorsement or policy of the ASSP Society, the Publi-
cations Board or the ASSP Magazine editorial personnel.

4 IEEE ASSP MAGAZINE OCTOBER 1988

Edward A. Lee

into the data path; the arithmetic is not done on a co-
processor which is separated from the main data path,
but rather is an integral part of execution of every in-
struction. Obviously, this is advantageous when most of
the instructions involve arithmetic. With careful organiza-
tion of the architecture, the instruction cycle time can be
made equal to the cycle time of the arithmetic hardware.
DSPs that are expected to be shipped within the next
year will be capable of a full 32-bit floating-point multiply
and add every 60-80 nsec. That is roughly 25 to 33 Mflops,
an impressive computational speed comparable to that of
today’s mainframe computers. But integrated fast arith-
metic does not tell the whole story. While necessary for
such performance, it is not sufficient. Today’s DSPs use
extensive pipelining, several independent memories,
parallel function units, and hardwired design (not mi-
croprogrammed). These architectural features often have
a serious deirimental impact on the assembly language,
and hence on the user or compiler designer. Fortunately,
this situation is improving.

We will illustrate most ideas with widely used DSPs
from three manufacturers, AT&T, Motorola, and Texas In-
struments, summarized in Table 1. Other important DSPs
are listed in Table 2. Most of the architectural features of
the DSPs in Table 2 are also represented in Table 1, so
their explicit inclusion in this paper would be redundant.
The reader is urged to contact the manufacturers for
complete and up-to-date specifications and not to rely on
the data presented in this paper. Other useful surveys of
DSPs are given in [Nis86], [Owe84], and [AlI85].

1.1. A Little History.

DSPs began to appear roughly ten years ago, with the
Bell Labs DSP1 [Bod81] and NEC 7720 [Nis81] being the
first that qualify. The 7720 architecture is still being up-
dated today (the 77C25 appeared this year), making it the
most durable single-chip DSP architecture. The Bell Labs
DSP1 was never marketed outside AT&T. The AMI S2811
[Nic78] was announced earlier, but delivery was delayed
because of problems with the VMOS technology. All of
these DSPs had internal memory, permitting stand-alone
system implementations.

A signal processor available before 1979 is the Intel
2920 [Tow79], which included A/D and D/A capability on

0740-7467/88/1000-0004%1.00©1988 |EEE



Motorola

Texas Inst.

chip, but lacked a hardware multiplier. A number of mi-
crocontrollers are also excluded for the same reason. Also,
there were (and still are) multi-chip computers special-
ized for signal processing, but | again will not classify
them as programmable DSPs. Finally, numerous digital
filter, modem, speech synthesis, and speech recognition
chips have been available since the early 1970s, but be-
cause of their limited programmability they are not in-
cluded in this survey.

In 1982, Texas Instruments introduced the TMS32010
[Mag82], the first member of what was to become the
most popular DSP family [Mag85] (Abi86] [Sim87]. Its popu-
larity was due in no small part to Tl's emphasis on devel-
opment software and hardware. At about the same time,
Hitachi introduced the first CMOS DSP, the HD61810 (HSP)
[Hag83]. It was also the first DSP to use a floating point
format (a 12 bit mantissa and 4 bit exponent). One year
later, Fujitsu greatly increased the speed of commercially-
available programmable DSPs with the MB8764 [Kik83],
which has a 120 nsec multiply and accumulate time.

In 1984, the Bell Labs DSP32 appeared on the market
[Ker85]. It was a first in two important respects: the first
DSP that AT&T would market, and the first 32-bit floating-
point DSP. Shortly thereafter, NEC introduced the uPD77230
[Kaw86], a 32-bit floating-point processor with a multiply
and accumulate time of 150 ns. NEC achieved this im-
pressive speed partly by separating the normalization of
floating-point results into a separate instruction. The first
floating point processor using the IEEE standard format is
the Fujitsu MB86232, which appeared in 1987 [Gam87].
Motorola is a relative newcomer in the marketplace; they
began shipping their first DSP, the DSP56001 [Klo86], in
1987. 1t is a 24-bit fixed point DSP.

The most recent crop of DSPs, all available or expected
in 1988 or early 1989, include both faster fixed-point devices
such as the Hitachi DSPi [Kan87] and AT&T DSP16A, and

- most examples. These DSPs are deemed by the author
Thew se'ec:t;mn does not consutut.e a 1udgement

1 umbér‘ af bn;s jh r.hé iad’der‘ of

; - no. bits
hxed pt.; : float. pt.
% - 32/40
lﬁm 24 32/40
- 16/36 ;
. 16/36
o 24/5%6 ;
. 32/64 44/96
- 16/32
o 16/32
. 16/32
- 24/32 32/40

three new floating-point devices, the AT&T DSP32C [Bod88],
the TI TMS320C30, and the Motorola DSP96001 and 96002.
The Motorola DSP, like the Fujitsu MB82232, uses the IEEE
floating-point standard internally, and Zoran plans to join
shortly with the 35325.

1.2. Basic Benchmarks.

In both Table 1 and Table 2, the multiply and accumu-
late (MAC) times are listed. This is one of the most basic
statistics for comparing the performance of program-
mable DSPs. As defined in this paper, the MAC time is
the time per tap for a very long FIR filter with in-line
code. This generally reflects the maximum rate at which
instructions involving both multiplication and accumula-
tion can be issued. For most of the processors it is equal
to the minimum instruction cycle time. Using the MAC
time, a crude estimate of the ability of a given DSP to
handle a certain application can be made as shown in
Table 3. As ¢an be seen from this table, quite sophisti-
cated signal processing can be done with today’s DSPs in
the voiceband range, but real-time video is out of the
range of a single DSP.

More meaningful benchmarks would be FFTs, [IR filter-
ing, division, and higher level functions. Comparing these
benchmarks, however, is tricky, because the benchmarks
are not always completely described and often don’t ex-
actly match those of the competition. In this paper, we
avoid this quagmire. DSP manufacturers are only now be-
ginning to use standard benchmarks in combination with
optimizing C compilers. This will facilitate comparison of
the devices in the future.

Programmable DSPs have successfully been applied in
voice and audio band real-time DSP products such as
voiceband data modems, echo cancelers, voice and digi-
tal audio coding, voice synthesis, speech recognition,
digital audio equalization, music synthesis, music pro-

OCTOBER 1988 |IEEE ASSP MAGAZINE 5



 Mostek

oos
Instr.

cessing, sample-rate converters as well as miscellaneous
telecommunications applications. They have also been
applied to non-real-time applications such as graphics,
medical imaging, simulation, and general image process-
ing. The expressive power of their assembly languages is
approaching that of microprocessors, so we can expect

8 IEEE ASSP MAGAZINE OCTOBER 1988

oM,
arger memories..

to see an explosion of applications. There is no fundamen-
tal impediment to using these devices for all types of
numeric-intensive applications. In the opinion of this
author, the only factor holding back such growth is the dif-
ficult programming and the poor performance of existing
compilers. This is an active area of research and develop-



ment, however, so we can expect significant improve-
ment in the near future.

1.3. Overview of the Paper.

The first feature that a prospective user needs to un-
derstand is the numeric format of the DSP. Conse-
quently, this paper begins with a brief discussion of the
tradeoff between fixed and floating-point DSPs. In the
process, some data paths are described. After this, we ex-
plore a variety of parallel memory organizations derived
from the basic Harvard architecture. These parallel mem-
ory organizations are crucial to the performance of the
DSPs. Part Il of this paper, to appear in the next issue of
ASSP Magazine, describes the pipelining of DSPs. The
fundamental differences between programming styles for
DSPs are simply different ways of dealing with pipelining.
Part Il will also discuss the future of programmable DSPs.

2. ARITHMETIC

Programmable DSPs come in two basic flavors, fixed
and floating point. The floating-point DSPs are more ex-
pensive and generally at least 50% slower than fixed-
point devices in comparable technology. The main
advantage of floating-point devices is that they free the
user from concerns about scaling. The main disadvantage
is a speed and cost penalty. Because of these penalties,
fixed-point DSPs are here to stay. Consequently, it is use-
ful to understand the implications of programming a
fixed-point device.

2.1. Fixed Point Arithmetic.

Most of us are accustomed to using floating-point
numbers by default, not worrying about word lengths
and only minimally worrying about overflow and under-
flow. When writing programs we typically restrict our use
of fixed-point numbers to array indices, loop counters, or
other variables that have inherently bounded integer val-
ues. Unfortunately, when using a fixed-point DSP, the
programmer has to pay more attention to the limitations
of the number system. In particular, overflow must be
prevented and precision must be carefully conserved by
scaling signals. Precision is lost through quantization er-
rors arising from two sources, A/D and D/A conversion
and multiplication. The former is well documented else-
where and does not depend on the DSP architecture, so
we will ignore it in this paper. The second, multiplication,
is present in all DSPs, and the structure of the DSP has a

significant impact.

Quantization errors occur when multiplying two num-
bers because the number of bits required to specify the
product with full precision is equal to the sum of the
number of bits in the operands. Discarding any of these
bits entails a loss of information. Most DSP architectures
permit the user to preserve the full product. Consider
the data path in Figure 1. Notice that the operands to the
multiplier have 16 bits, while the ALU and accumulator
register have 32 bits. Consequently, the programmer can
perform many successive multiply-and-add operations (to
compute, for example, an inner product) without dis-
carding any bits in the products. If the operands to the
multiplier have N bits, it is typical to have at least 2N bits
in the ALU and accumulators.

In most DSPs, products with 2N bits can be stored and
manipulated as double-precision numbers. But this is ex-
pensive (in time and memory) and is usually not neces-
sary. If only N bits of a 2N bit result are kept, it is up to
the programmer to determine which N bits to keep. It is
desirable to keep the lowest order N bits possible with-
out causing an overflow in order to preserve as much
precision as possible. The shifter after the accumulator in
Figure 1 is provided for this purpose.

DATABUS(15)

7

OCTOBER 1988 |IEEE ASSP MAGAZINE



Overflow occurs in two ways in a fixed-point DSP. Ei-
ther the accumulator register overflows when too many
numbers are added to it, or the program attempts to
store N bits from the accumulator and the discarded high
order bits are important. The following measures can be
taken against overflow:

* More precision: For the first type of overflow, a partial
solution is to use a larger word size for the accumulator
and ALU. Consider, for example, the data path in Figure 2.
The accumulators and ALU have 36 bits rather than 32.
Four extra bits are provided as headroom against overflow.
This permits the programmer to add up to 2* — 1 =15
32-bit products to the accumulator with complete confi-
dence that overflow will not occur. Most DSPs do in fact
have extra headroom bits in the ALU and accumulators.

+ Saturation arithmetic: When an overflow occurs, the
DSP simply sets the value of the result to the largest mag-
nitude positive or negative number, as appropriate, and
proceeds as if nothing had happened. This is far better
than simply permitting the overflow to occur, which
yields a large magnitude and/or sign error. It is also better
than special fault processing, which is usually inconsis-
tent with real-time constraints. In order for this to work
for both types of overflow, the ALU should have satura-
tion hardware, and there must be saturation hardware
between the accumulator and the data bus. For example,
the SHIFT/SAT unit in Figure 2 performs this function.

+ Shifting products: Before adding a product to the ac-
cumulator, it can be shifted down (with sign extension),
discarding the low order bits. Of course, this entails a
loss in precision. The shifters after the product registers
in Figure 1 and Figure 2 can be used for this purpose.
Since this shifting is effectively a scaling of the product,
the programmer must take it into account.

\

Figure 2. The simplified data path the AT&T DSP16
and DSP1BA. : e

8

IEEE ASSP MAGAZINE OCTOBER 13988

Example 1

All three measures are available in the Motorola
DSP56001 (as well as the DSP16). Its data path is shown
in Figure 3. The multiplier operands have 24 bits. There
is no product register in this data path because the
multiply and accumulate operations are integrated into
asingle indivisible hardware unit, as shown in Figure 3.
Accumulators have 56 bits, or 8 bits of headroom
above the 48 bit product. A limiter (saturation) is pro-
vided between the accumulators (A and B) and the
24 bit busses.

A complete solution to the overflow problem requires
that the programmer be aware of the scaling of all vari-
ables so that overflow is sufficiently unlikely, where “suf-
ficiently” depends on the application. Of course, the
programmer could ensure that the values of all variables
are small, but then the quantization error will be large.
The objective therefore is to maximize the average mag-
nitude of the variables subject to the constraint that over-
flow is sufficiently unlikely. This is not always easy to do.
The programmer should consider the statistics of the in-
coming signal(s) and scale intermediate variables to mini-
mize the probability of overflow while conserving as
much precision as possible.

The power of the quantization error is roughly inde-
pendent of the signal level as long as overflow does not
occur. Consequently, the signal-to-quantization-noise
ratio increases linearly with signal level, as shown in Fig-
ure 4a, until overflow occurs, at which time the signal-to-
noise ratio degrades rapidly. The dynamic range can be
defined as the range of signal levels over which the SNR
exceeds a minimum acceptable SNR, X dB. With some
simple assumptions about the statistics of the quantiza-
tion errors, we can write the signal to quantization noise
ratio as

()]

where we have assumed no overflow. R is the ratio of the
input power to full-scale (in dB) and K is a constant that
depends on the statistics of the quantization noise. In (1)
we see that each additional bit yields an improvement in
SNR of 6 dB. Referring to Figure 4a, this is equivalent to
stating that the dynamic range is increased by 6 dB for
each additional bit. Consequently, a 24-bit DSP such as
the DSP56001 has 48 dB more dynamic range than a 16-bit
DSP.

SNRy = 6N + R+ K

2.2. Floating Point Arithmetic.

After performing a fixed-point operation, when the
contents of a full-precision accumulator register are to be
stored, it would be convenient if the hardware could
identify the best bits in the result to store and at the same
time keep track of the scaling changes. In effect, this is
the role of floating point. A floating-point number x is
made up of a mantissa M(x) and an exponent E(x) such that

X = M(x) x 2t @)



56 BITS
_7/
56 BITS
Asspms | MuLTRLY
; | ACCUMULATE
| sLogicaL
SHIFTER. T

e simplified data path of the Motorola DSP5E001,

Suppose two floating-point numbers x and y are to be therefore requires 48 bits, of which 32 bits are kept in

multiplied. The product is the DSP32/C and TMS320C30 and 47 bits are kept in the
2= M) X M(y) x 290+ 01 3  NECuPD77230.
. . - . Example 3
A hardware floating-point multiplier must contain both a ) . o
multiplier for the mantissas and an adder for the expo-  'he floating-point multiplier in the DSP96002 can take
nents. Extra precision is usually provided to store the ~ ©Perands with up to 44 bits (32 bit mantissa and 11 bit
product of the two mantissas. exponent). The full precision result (64 bit mantissa,

11 bit exponent) can be stored in 96-bit registers or

Example 2 processed with a 44-bit floating-point adder.

The DSP32, DSP32C, TMS320C30, and NEC wPD77230
all allocate 8 bits to the exponent and 24 bits to the After each floating-point operation, numbers should
mantissa. The full-precision product of two mantissas be renormalized. When two mantissas are multiplied to-

SNRind8

14}"’"!
indB

sbout 1500 dB dynamic range

(L

n here as & function of signal level. In (a), fixed-
t arithmetic with a 24 bit mantissa and 8 bit ex-
of the floating-point format is much

OCTOBER 1988 |IEEE ASSP MAGAZINE 9




gether, it is possible to get a result where several of the
most significant bits are identical and hence need not be
stored. A shift can be performed to dispose of these extra
bits and the exponent can be adjusted to keep track of
the scaling. In all floating-point DSPs except the NEC
uPD77230, the renormalization is done automatically in
hardware. In the uPD77230, an extra normalization in-
struction is required.

The specific format for floating-point numbers unfor-
tunately differs in all DSPs. The subtleties in different
formats are beyond the scope of this paper, but one im-
portant point is worth mentioning. The DSP96002 and
Zoran 35325 are expected to be the first DSPs to conform
with the [EEE 754 floating-point standard.

A rough comparison of 32-bit floating-point formats
with fixed-point formats is given in Figure 4. As shown, a
24-bit fixed-point format approaches K + 144 dB SNR at
the point where the probability of overflow begins to
dominate. This represents therefore a bound on the SNR
achievable with 24 bits. A floating-point number with a
24-bit mantissa, however, essentially accomplishes perfect
scaling and consequently achieves the best performance
possible with 24-bits. Furthermore, an 8-bit exponent is
adequate to maintain this SNR over a huge dynamic range
of about 1500 dB. This means the programmer can almost
ignore scaling issues.

3. MEMORY

Traditional microprocessor architectures have limited
memory bandwidth and achieve high performance with
register-to-register instructions. DSPs have much higher
memory bandwidth and use more memory-to-memory
instructions. For some DSPs, up to six memory fetches
can occur in each instruction cycle. Most DSPs achieve
the required memory bandwidth using parallel memory
banks and small, fast, simple memories (i.e. without vir-
tual memory or familiar cache memories). High band-
width means that it is possible to access several memory
locations in each instruction cycle.

Consider a finite impulse response (FIR) filter shown in
Figure 5. Each tap requires: (1) fetching the instruction,
(2) fetching two operands from memory, (3) multiplying,
(4) accumulating, and (5) shifting data in the delay line.
All modern DSPs can implement an FIR filter in one in-
struction cycle per tap. We have seen the parallel arith-
metic hardware that permits the simultaneous multiply

10

IEEE ASSP MAGAZINE OCTOBER 1988

and accumulate, but how to achieve the simultaneous
memory accesses is not as obvious. The solution is a
combination of parallel memory banks and rich address-
ing modes.

3.1. Parallel Memories.

In principle, memory bandwidth can be increased with
fast busses and memories; each instruction cycle would
involve several memory accesses, so the memory cycle
time would have to be a fraction of the instruction cycle
time. However, fast memories are larger (in VLS| area)
and consume more power. The increased cost and re-
duced memory capacity of this approach would compro-
mise the utility of the DSP. An alternative approach is
multi-ported memories, but a more common approach is
to use multiple memory banks and only one or two mem-
ory cycles per instruction cycle. Six organizations are
shown in Figure 6. We will illustrate these possible orga-
nizations with a sequence of examples.

Example 4

One of the earliest DSPs, the TI TMS 32010, uses the
basic Harvard architecture, as shown in Figure 7. There
are two memories and two busses. The fetching of an
instruction coincides with the fetching of an operand
for the previous instruction. Instructions with one
operand from memory can be executed at a rate equal
to the memory cycle time, assuming other hardware is
fast enough. Contrast this with a single-memory archi-
tecture in which the instruction and its operands would
have to be fetched sequentially from the same mem-
ory. Although it is possible to store data in the program
memory, accessing that data (via TBLR and TBLW instruc-
tions) is slow.

The first variation on the basic Harvard architerture is
to permit data stored in the program memory to be used
directly in arithmetic instructions. An instruction cannot
be fetched at the same time that data is being fetched, so
instructions with two or three operands require two
memory cycle times to execute.

Example 5

In the TMS32020 and TMS320C25, operands can be ac-
cessed from program memory. The memory cycle time
is equal to the basic instruction cycle time, so instruc-
tions with two operands from memory required two cy-
cles for execution. An example of such a two-operand
instruction is the MAC (multiply and accumulate),
which specifies both operands to be multiplied. We will
see shortly that further modifications to the Harvard
architecture permit this instruction to sometimes exe-
cute in one cycle.

Example 6

In the DSP32 and DSP32C there are two memory banks,
either of which can have instructions and data. Unlike
the TMS32010/20/C25, the memory cycle time is half of
a basic instruction cycle time, so two accesses of each



of the two memories can be done in each instruction
cycle. Instructions with up to three operands from
memory can therefore be executed in one cycle. An ex-
ample is

(m1 = a0) = a0 + m2 * m3

where mj represent memory addresses in the appropri-
ate assembly language format (discussed below). Such
an instruction does not always execute in one cycle,
however. The data has to be appropriately scattered in
the two memory banks, and neighboring instructions
must not be trying to access the same memory banks at
the same time (this will be discussed further in Part Il
of the paper. Fortunately, the hardware ensures correct
operation by delaying instructions if necessary. Conse-
quently, the programmer can ignore the Harvard archi-
tecture until it becomes necessary to optimize the code.

me—————

The second modification to the basic Harvard architec-
ture (see Figure 6) is to use a multi-ported data memory.
Although this is often perceived as an expensive solution,
it has the advantage of permitting multi-operand instruc-
tions without worry about separating operands into mul-
tiple banks.

Example 7

The Fujitsu MB86232 (see Table 2) has a program mem-
ory and a triple-ported data memory (512 words). Simul-
taneous access to the data memory is accomplished
using three busses; taking these busses off-chip would
require many pins and the external memory would be
non-standard and expensive, so off-chip data memory
for the MB86232 is single-ported. Multi-operand in-
structions using off-chip memory take multiple cycles
to execute.

The third modification to the basic Harvard architec-
ture (see Figure 6) supplements program/data memory
with an instruction cache. Whenever instructions in the
cache are being executed, no instruction-fetch cycle is
required of the program/data memory, so a cycle is freed
for a data fetch.

Example 8

The TMS32020 and TMS320C25 provide a repeat in-
struction for use in combination with instructions such
as the MACD. For example, the following code seg-
ment can be used to implement an FIR filter:

RPTK
MACD

constant
mi1,m2

The RPTK instruction causes the following instruction,
MACD, to be loaded into a unit-length instruction

11

OCTOBER 1888 |EEE ASSP MAGAZINE



cache from which it is executed the number of times
specified by “constant”. After the first exeécution of
MACD, the program/data memory is not needed for in-
struction fetches and can therefore be used for data
fetches with addresses given by m1 and m2. So the first
MACD executes in two cycles, but subsequent MACDs
execute in one. ‘

The unit-length instruction cache of Example 8 serves
the basic function of economizing on memory cycles, but
it also permits low-overhead loops. The RPTK instruction
provides a mechanism for iterating an instruction a fixed
number of times without devoting extra instructions to
setting and testing a loop counter and branching. The
Hitachi 61810 was the first DSP to support low-overhead
looping, although it is a common feature today. An obvi-
ous extension to the technique of Example 8 is to use a
larger instruction cache.

Example 9

The DSP16 and DSP16A also use the third modification
of the Harvard architecture, with an instruction cache
that can hold 15 instructions (see Figure 8). Low-over-
head loops can have up to 15 instructions.

Example 10

The Analog Devices ADSP-2100 is similar except that
the program and data memory are off chip. The pro-
gram cache (16 instructions) is on chip. The ADSP-2101/2
have some memory on chip.

Low-overhead looping is not always associated with an
instruction cache; in fact, the most flexible low-overhead
looping capability is found in the DSP56001 and DSP96002,
which have no instruction cache. These use a further

extension of the Harvard architecture, which is to expand

Figure B, Slmphﬁed biock dsagram»: of the D
DSP16A showmg the ) 1 wh
sponds to maodification
tail is shown in thure 2

II 2 IEEE ASSP MAGAZINE QOCTOBER 1988

the instruction cache until it becomes a memory bank,
getting modification #4 in Figure 6. This permits simulta-
neous fetches of an instruction and two operands when
the memory cycle time is equal to the instruction cycle
time.

Example 11

The Motorola DSP56001 and 96002 use three memory
banks as shown in Figure 9. If the programmer is care-

_ful to divide data so that operations with two operands
from memory fetch their data from both the X and Y

memories, then such operations consume only one in-
struction cycle. In the 96002, the memories can be ac-
cessed twice in each instruction cycle, like the DSP32
and 32C. The second access is used for DMA. Conse-
quently, DMA does not interfere with program execu-
tion.

Example 12

The TMS320C30, shown in Figure 10, has three internal
memory blocks similar to the banks of the DSP56001
and 96002, two RAMs and a ROM. If the program is in
ROM, then instructions with two operands from mem-
ory consume only one cycle. Like the 96002, DSP32 and
32C, each memory block can be accessed twice in each
instruction cycle. Unlike the 96002, the second access
can be used by some multi-operand instructions, so
that even if two operands come from the same memory
block, the instruction still only consumes one cycle.
The extra memory cycles are also available to the DMA
unit to transfer external data to the memories without
interfering with the executing program.

Even with such high memory bandwidth, it is still
possible to have conflicts. A given sequence of instruc-
tions may try to access the same memory bank three
times in one instruction cycle. In this event, the hard-
ware detects a conflict and delays one of the instruc-
tions. Hence, like the DSP32 and 32C, the programmer
can ignore the parallel memory architecture until it be-
comes necessary to optimize the code.

Just as with the DSP56001, 96002, DSP32 and 32C, an
instruction cache is not required for instructions to exe-
cute at top speed because the memory bandwidth is
high enough. However, this is only true if the program
is stored on-chip. The TMS320C30 has an instruction
cache that is used when the program is stored off-chip.
Off-chip accesses can only occur once per instruction
cycle instead of twice, and only two busses are avail-
able externally instead of four (see Figure 10). When an
off-chip program access is initiated, the 320C30 first
checks to see if the instruction is in the cache. If it is,
the external memory cycle is conserved. Otherwise,
the instruction is fetched and loaded into the instruc-
tion cache. The detailed cache strategy, reminiscent of
that used in many general purpose computers, is de-
scribed in the user’s manual.

The TMS320C30 achieves high memory bandwidth by

accessing parallel memories twice in each cycle. This



means an instruction cycle time cannot be smaller than Example 13

twice the memory cycle time. It is possible to get a simi- The DSPi from Hitachi uses six memory banks as in
lar effect using many more parallel memories. modification #5 of Figure 6. One instruction cycle time

 ADDRESSBUSSES(S)

it

PERIPHERALS |

OCTOBER 1988 IEEE ASSP MAGAZINE 1 8



is equal to one memory cycle time. Instructions with
three operands from memory (involving, for example,
two reads and write) use three of the four data memories
and the program memory. Simultaneously, an 1/O
instruction can access the fourth memory. Although
faster instructions are possible with the same memory
technology (compared to the DSP32C, DSP96002, and
TMS320C30), the programmer must carefully arrange data
in memory to take advantage of the multiple memories.

The demand ratio is defined to be the total number of
memory cycles per instruction cycle [Kog81]. Demand
ratios are summarized in Table 4. DSPs with the smallest
demand ratio (two) require instruction caches in order to
be able to execute instructions with two operands from
memory in a single cycle. In addition, in order to imple-
ment FIR filters in one instruction cycle per tap, either
circular buffer addressing modes (discussed below) or a
specialized write cycle (found in the TMS32010/20/C25
and the DSP16) is required (discussed below). DSPs with

TABLE 4. A summary of DSP me
tion cycle. It is specified only for inte
memary cycles are not count:
to move data in a delay line. The size
memory is indicated umbers

P

DSP32

DsP32C

DSPi6
DSPI6A

DSP56001

DSP96002

TM$32020.

14

IEEE ASSP MAGAZINE

OCTOBER 1988

a demand ratio of three (the DSP56001) do not require an
instruction cache, but do require circular buffer address-
ing modes for delay lines. DSPs with a demand ratio of
four or higher need neither circular buffer addressing
modes nor instruction caches. Note, however, that the
demand ratio is given for on-chip accesses and is usually
much lower when memory is off-chip.

3.2. Internal and External Memory.

Traditionally, DSPs have been intended for use in highly
cost-competitive applications, and the intent was to pro-
vide complete or nearly complete systems-on-a-chip. In
order to do this, most DSPs are microcomputers, not mi-
croprocessors, which means that memory is on-chip.
There are more subtle reasons for having memory on-
chip, however. Multiple independent memory banks and
multi-ported memories are difficult to implement off-
chip because the pin count required for the off-chip bus-
sing is excessive, and the speed penalty of off-chip

number of memory cycles per instruc-
ernal memories. Also, highly specialized
ave a specialized write cycle used
present. The amount of internal

external
 14KW data/prog

AMW data/prog

“oHow g

- 64KW program

o (3)64KW prog/data

~ 4GW prog
- (24CGW data

- 64KW prog

W data/prog



bussing increases the system cost by requiring faster
memories.

Example 14

The Motorola DSP96001 has a 32-bit word and three
memory banks, each with a 32-bit address (for a 4GW
word address space per memory bank, the largest of all
the DSPs). To implement the memory externally using
three address and data busses would require 192 pins
for the bussing alone. Multiplexing the busses would
be difficult because of the fast cycle times, and it would
require costly external demultiplexing hardware. The
96001 therefore brings only one of the busses outside.
The user can select the bus using a bus switch like that
shown in Figure 9. The 96002 is a 200-pin version of the
96001 that brings two busses outside (the user can
again select which busses). The cost is a more expen-
sive package.

In order to converse pins for other uses, most DSPs
have enough internal memory in each memory bank for
viable operation. internal busses are then multiplexed to
the outside. The system designer may choose to expand
only one of the memory banks off-chip, in which case
full-speed operation is often possible (if fast enough off-
chip memories are used). With the 96002, full-speed op-
eration is possible when two memory banks are off-chip.
Sometimes the off-chip memories can be used to store
pages of data or program destined for memory banks that
are not expanded off-chip, in which case the software
must handle the paging.

3.3. Addressing Modes.

Parallel memory banks can increase memory band-
width as discussed above, but one fundamental problem
remains. Instructions must specify as many as three
memory accesses. For a reasonable address space, the
number of bits required to specify each address is large
enough that the width of the instruction word gets large.
This means more memory required to store the program,
wider busses to access the program memory, or more
memory cycles to access each instruction (if multi-word
instructions are used).

The universal solution is register-indirect addressing
modes. Register-indirect addressing modes are typically
the workhorse of programmable DSPs because they per-
mit the specification of many memory addresses in a one-
word instruction. A set of address registers is provided
for the purpose. These registers are loaded with an ad-
dress of one word in a data structure (for example, the
first or last sample in the delay line of Figure 5), and then
all instructions accessing the data structure specify this
register as the one containing the address. Since the reg-
ister bank is small, few bits are required to specify the
register. Furthermore, parallel hardware is provided to
update registers containing memory addresses. This min-
imizes the number of register-load instructions required.

Consider again the FIR filter in Figure 5. A reasonable
implementation begins by setting one address register to

point to the end of the delay line and another register to
point to the last filter coefficient. Then a sequence of in-
structions (one per tap) each do the following: (1) fetch
the two operands, using the register addresses, (2) mul-
tiply and accumulate, (3) decrement the register con-
tents, and (4) move the data operand to the following
location, thus implementing a delay line.

Example 15

In the DSP32 and DSP32C, a five tap FIR filter can be ac-
complished with the following code:

r 1 =address of last word in delay line
r 2 =address of last coefficient

r 3=address of last word in delay line
al=new sample (input)
al=*r1--xxr2--
al=a0+(*r3--=%p1--)*xr2--
al0=al0+(*r3--=*r1--)x*r2--
al0=a0+(*r3--=*rf--)**r2--
al=al0+(*r3=a1)**r2

result is in a1

The first four instructions initialize the registers, and a0
and a1 are accumulator registers. The symbol “*” is
used to indicate multiplication and also to indicate in-
direction. In other words, *ri refers to the contents of
the memory location whose address is given by the
register ri. The “--” symbol following the *ri symbols
indicates that the register contents should be decre-
mented by one after the instruction (but before the
next instruction). This is called a post-auto-decrement.
Notice that the arithmetic instructions accomplish the
filtering with one instruction per tap.

Example 16

It is instructive to consider register-indirect addressing
with one of the earlier DSPs, the TMS32010, shown in
Figure 7. An extra level of indirection is introduced using
an address register pointer (ARP) to point to the “cur-
rent” address register. The TMS32010 has only two ad-
dress registers, ARO and AR1, so the ARP has only one
bit. Only instructions with a single operand from mem-
ory are supported, so the implementation of an FIR filter
is as follows:

LARK ARO , address of last coefficient
LARK AR1 , address of last data word
LARP 0

LT *- AR1

MPY *- ARO

LTD *- AR1

MPY *- ARO

LTD *-  AR1

MPY *- ARO

APAC

ADD ONE, 14

SACH RESULT,1

The first two instructions load the address registers and

15

OCTOBER 1888 |EEE ASSP MAGAZINE



the third instruction loads ARP. The fourth instruction
uses the “current” AR (which is ARO) as its operand, de-
noted “*”, and then sets the ARP to point to AR1. The
symbol “*-” can be read: “use the contents of the cur-
rent AR as the memory address for the operand, then
decrement the AR by one.” The rest of the program
can be understood by referring to Figure 7. The LT in-
struction loads the T register. The MPY instruction mul-
tiplies the contents of the T register by its operand. The
LTD instruction is the same as the LT instruction except
that the operand is copied into the next higher mem-
ory location. This instruction is specifically designed to
perform the shifting of a data in a delay line and is not
usually useful for anything else. The LTD instruction
also performs an addition; adding the P register to the
accumulator. Note that two instructions per tap are re-
quired to implement an FIR filter in this machine. We
saw in Example 8 how a unit-length instruction cache is
used to reduce this to one instruction per tap in the
TMS32020.

Shifting of data in a delay line is expensive in memory
bandwidth. An extra memory write cycle is needed. An
efficient alternative in some cases is modulo-mode ad-
dressing. The delay line is implemented as a circular buffer
as shown in Figure 11. M + 1 contiguous memory loca-
tions are allocated, beginning at location L, and when
a register is incremented beyond location L + M, it re-
verts to location L. Similarly, if an address register is
decremented below location L, it again wraps around to
higher locations. This can be done in some DSPs without
extra instructions except those required to initialize some
registers.

Figure 11. A circular buffer be
L and ends at memor t
the next r

Example 17

The Y memory in the WE DSP16 can be accessed using
modulo-mode addressing by setting rb to point to the
beginning of the buffer and re to point to the end, as
shown in Figure 12. A hardware comparator then checks
to see if the modified address is out of range and ad-
justs it if it is.

Example 18

The Motorola DSP56001 and DSP96002 have address
registers that come in triplets, Rx, Mx, and Nx, where x

1 6 IEEE ASSP MAGAZINE OCTOBER 1988

start move

varies from 0 to 7, as shown in Figure 13. The address is
in Rx, the increment for the post-auto-increment is in
Nx, and the length of the circular buffer (if a modulo-
mode addressing is being used) is in Mx. These regis-
ters are loaded and read through the global data bus
(see Figure 9). Auto-increment and modulo arithmetic
is performed in the two address arithmetic units, so
simultaneous modulo-mode addressing can be per-
formed in two separate memory banks. This leads to
the simple FIR filter program shown below:

address of delay line, r 0

move address of first coefficient, r 4
move filter order-1, m0
move m0,m4
fir movep x:input,{(r0)
clr a x:(r0)-,x0 y:(rd4)+,y0
rep m0
mac x0,y0,a x:(r0)>-,x0 y:€rd4d+,y0
macr x0,y0,a (r0)+
movep a,x:output
jmp fir

The data delay line is in X memory and the coefficients
are in Y memory; circular buffers are used for both.
This is accomplished simply by loading the m0 and m4
registers in the third and fourth instructions. The first
movep instruction fetches the input; the clr initializes
the accumulator and fetches the first pair of operands;
the rep indicates that the next instruction should be
repeated filter order-1 number of times; the mac is the
multiply-and-accumulate; the macr is the multiply-and-
accumulate with rounding; and the final movep out-
puts the result.

In order to simplify the address arithmetic units, cir-
cular buffers are restricted to begin on power of two
boundaries. In other words, if the length of the buffer
is less than or equal to 2* but greater than 2", then the
low order k bits of the starting address must be zero.
Consequently, the starting address of the circular
buffer must fall on a multiple of 2. Unlike other DSPs,



|

. ni
960’32 is stmn!ar

4| mux [ foeux |
o 'i;f ’r . u'f :
o Pﬁa : VAB,

resslng the I\é!dotamia D8F‘58001 is accomphshed using two reg-

SS rsgrster Fix. Mx specifies the length of the
. smu!af* buffers must begin on

the 56001 and 96002 support multiple simultaneous cir-
cular buffers that can reside in either memory.

Example 19

The TMS320C30 uses a single register BK to specify
the length of a circular buffer. Like the DSP56001 and
DSP96002, the circular buffer must begin on a power-
of-two boundary. Any address register ARx can be
used to address the circular buffer using the notation
*ARx + +(IRy)%. Translated, this means that the con-
tents of ARx will be post-modified by adding the index
register IRy in such a way that the resulting address re-
mains inside the circular buffer (indicated by the “%").
The IRy can be replaced with an immediate displace-
ment in the range 0-255 and the “++” can be replaced
with a “--”. The ARx must already contain an address
inside the circular buffer, which implies that if the low
order k bits of the ARx register are set to zero, the re-
sulting address will be the beginning of the buffer. An
FIR filter computation using circular buffers can be ac-
complished with the following code:

LDI filter_order+1, BK

LDI last_coef address, ARO

LDI end of delay line, AR1

LDF 0,R0

LDF 0,R2

RPTS filteriorder

MPYF3 *ARO++(1)% ,*AR1++(1)%,R0
| ADDF3 R0O,R2,R2

ADDF RO,R2

The first five instructions load immediate data (integer
and floating point) into registers. The sixth instruction
indicates that the seventh instruction should be re-
peated filter order +1 times. The seventh instruction is
a parallel multiply and add, and takes two lines to
write. It is important to note that the multiply and add

occur in parallel, so although the product is placed in
RO, it is not accumulated in R2 until the next time the
parallel multiply and add instruction is executed (see
the discussion on pipelining below). The first addition
executed, therefore, simply adds two zeros. The final
instruction performs the last add. To build a complete
FIR filter from this code segment, I/O instructions must
be added and an outer loop must be specified.

Register-indirect and modulo-mode addressing cannot
generally be used exclusively. As seen in the above code
segments, most DSPs have some form of immediate ad-
dressing where the operand is part of the instruction,
and direct addressing where the address is part of the in-
struction. Such addressing modes are required for regis-
ter load instructions, for example. In many cases, these
addressing modes require two-word instructions. Such
instructions usually cannot be executed as fast as one-
word instructions because two fetches from program
memory are required. Some DSPs have “short” immedi-
ate and direct address data which can fit in one instruc-
tion word and execute in one cycle, but the operations
that can be done with such data are always more limited
than what can be done with register-indirect addressing.

Other addressing modes that are found are index mode
in which the increment is added to the address before
the fetch rather than after.

Example 20

In the TMS320C30, the assembler notation *+ARn(disp)
means that the content of address register ARn is
added to the 8 bit constant disp (which is part of the in-
struction word) before the memory fetch. The notation
*++ARn(disp) is similar except that ARn is modified.
One of two special registers, IR0 and IR1, can be used
in place of disp. Of course, post-modification is also
available, and would be denoted *ARn ++(disp).

17

OCTOBER 1988 |IEEE ASSP MAGAZINE



Example 21

The DSP56001 and 96002 also have indexed addressing,
but instructions that use indexed addressing require an
extra cycle to complete.

Indexed addressing is useful for random access of ar-
rays, and can sometimes be used to write position-inde-
pendent code.

The addressing modes of the DSPs in question are
summarized in Table 5.

4. CONCLUSION

Without discussing it explicitly, we have already seen
some evidence of pipelining in DSPs. We have seen that
an instruction is fetched in parallel with the operands of
the previously fetched instruction. Part 1l of this paper, to
appear in the next issue of ASSP Magazine, will discuss
pipelining in depth. In addition, it will put forth some
bold predictions about the future of DSPs.

5. ACKNOWLEDGMENTS

The author gratefully acknowledges the careful reading
and thoughtful comments of Jim Boddie, Craig Garen,
and John Hartung from AT&T, Philip Goldworth and T.]J.
Shan of Fujistu, Kenji Kaneko from Hitachi, Bryant
Wilder, Kevin Kloker, and Garth Hillman from Motorola,
Takao Nishitani of NEC, and Panos Papamichalis and Ray
Simar from Texas Instruments. Other helpful suggestions
were made by Bob Owen. Any remaining errors are en-
tirely the fault of the author.

18

IEEE ASSP MAGAZINE OCTOBER 1988

REFERENCES

[Abi86] S. Abiko, M. Hashizume, Y. Matsushita, K.
Shinozaki, and T. Takamizawa, “Architecture and Appli-
cations of a 100ns CMOS VLSI Digital Signal Proces-
sor,” Proceedings of ICASSP 86, pp. 393-396, April 1986
(Describes the TI TMS320C25).

[AlI85] J. Allen, “Computer Architecture for Digital Signal
Processing,” Proceedings of the IEEE, May, 1985 73(5).
[Bar88] B. Barazesh, ).-C. Michalina, and A. Picco, “A VLSI
Signal Processor with Complex Arithmetic Capability,”
IEEE Trans. on Circuits and Systems, Vol. 35, No. 5, May

1988 (Describes the Thomson/Mostek 68931).

[Bod81] J.R. Boddie, G.T. Daryanani, I.1. Eldumiati, R. N.
Gadenz, J.S. Thompson, and S. M. Walters, “Digital
Signal Processor: Architecture and Performance,” Bell
Sys. Tech. J., 60 pp. 1449-1462, 1981 (Describes the Bell
Labs DSP1).

[Bod88] J. R. Boddie, C.]J. Garen, M. L. Fuccio, and J. Tow,
“A Floating Point DSP with Optimizing C Compiler,”
Proceedings of ICASSP, pp. 2009-2012, New York,
April, 1988. (Describes the Bell Labs DSP32C).

[Hag83] Y. Hagiwara, Y. Kita, T. Miyamoto, Y. Toba,
H. Hara, and T. Akazawa, “A Single Chip Digital Signal
Processor and its Application to Real-Time Speech
Analysis,” IEEE Trans. on ASSP, ASSP-31(1), 1983 (De-
scribes the Hitachi HD61810 (HSP)).

[Gam87] H. Gambel, T. Ikezawa, N. Kobayashi, T. Tanabe,
and S. Unagami, “A 32 Bit Floating Point Digital Signal
Processor FDSP-4 and its Application to the Communi-
cation Systems,” Proceedings of Globecom 87, 1987
(Describes the Fujitsu MB86232).



[Kan87] K. Kaneko, T. Nakagawa, A. Kiuchi, Y. Hagiwara,
H. Ueda, H. Matsushima, T. Akazawa, and . Ishida, “A
50ns DSP with Parallel Processing Architecture,” IEEE
Int. Solid-State Circuits Conference, Digest of Techni-
cal Papers 1987 (Describes the Hitachi DSPi).

[Kaw86] Y. Kawakami, H. Tanaka, T. Nukiyama, M.
Yoshida, T. Nishitani, |. Kuroda, M. Araki, T. Hoshi, “A
32b Floating Point CMOS Digital Signal Processor,”
ISSCC 86 Digest of Technical Papers, 1986, (Describes
the NEC wPD77230).

[Ker85] R.N. Kershaw, L. E. Bays, R.L. Freyman, |J.].
Klinikowsi, C.R. Miller, K. Mondal, H.S. Moscovitz,
W. A. Stocker, and L. V. Tran, “A Programmable Digital
Signal Processor with 32b Floating Point Arithmetic,”
ISSCC 85 Digest of Technical Papers, Feb. 13, 1985 (De-
scribes the AT&T Bell Labs DSP32).

[Kik83] H. Kikuchi, T. Inaba, Y. Kubono, H. Hambe, and T.
Ikesawa, “A 23 K Gate CMOS DSP with 100 ns Multipli-
cation,” IEEE Int. Solid-State Circuits Conference,
Digest of Technical Papers, pp. 128-129, 1983 (De-
scribes the Fujitsu MD8764).

[Klo86] K. Kloker, “Motorola DSP56000 Digital Signal
Processor,” IEEE Micro, December, 1986.

[Kog81] P. M. Kogge, The Architecture of Pipelined
Computers, Hemisphere Publishing Co., McGraw, New
York, 1981,

[Mag82] S. Magar, E. Caudel, and A. Leigh, “A Microcom-
puter with Digital Signal Processing Capability,”
International Solid-State Circuits Digest of Technical
Papers, Feb., 1982, pp. 32-33 (Describes TI TMS32010).

[Mag85] S. Magar, D. Essig, E. Caudel, S. Marchall, and R.
Peters, “An NMOS Digital Signal Processor with Multi-
processing Capability,” International Solid-State Cir-
cuits Digest of Technical Papers, Feb., 1985 pp. 90-91
(Describes the TI TMS32020).

[Nic78] W.E. Nicholson, R. W. Blasco, and K. R. Reddy,
“The 52811 Signal Processing Peripheral” Proceedings
of WESCON, pp. 1-12, 1978 (Describes the AMI $2811).

[Nis81] T. Nishitani, R. Maruta, Y. Kawakami, and H.
Goto, “A Single-Chip Digital Signal Processor for
Telecommunications Applications” IEEE J. Solid-State

Circuits SC-16, pp. 372-376, 1981 (Describes the NEC
uPD7720).

[Nis86] T. Nishitani, “Signal Processor Design Methodol-
ogy,” in Design Methodologies, edited by S. Goto, El-
sevier Science Publishers B. V. (North-Holland), 1986.

[Owe84] R.E. Owen, “VLSI Architectures for Digital Sig-
nal Processing,” VLSI Design, june, 1984.

[Sim87] R. Simar, T. Leigh, P. Koeppen, |. Leach, J. Potts,
and D. Blolock, “A 40 MFLOPS Digital Signal Processor:
The First Supercomputer on a Chip,” Proceedings of
ICASSP 87, pp. 535-538, April, 1987 (Describes the Ti
TMS320C30).

[Tow79] M. Townsend, M. E. Hoff, and R.E. Holm, “An
NMOS Microprocessor for Analog Signal Processing,”
IEEE J. Solid-State Circuits SC-15(1) Feb. 1980 (Describes
the Intel 2920).

[Ung85] G. Ungerboeck, D. Maiwald, H.P. Kaeser, P.R.
Chevillat, and ). P. Beraud, “Architecture of a digital sig-
nal processor,” IBM Journal of Research and Develop-
ment, March 1985.

Edward A. Lee has been an assistant professor
in the Electrical Engineering and Computer
Science Department at U.C. Berkeley since
July, 1986. His research activities include par-
allel computation, architecture and software
techniques for programmable DSPs, design
environments for real-time software devel-
opment, and digital communication. He has
taught short courses on the architecture of

i programmable DSPs and telecommunications
applications of programmable DSPs. He was a recipient of the 1987
NSF Presidential Young Investigator award, an I1BM faculty develop-
ment award, and the 1986 Sakrison prize at U.C. Berkeley for the
best thesis in Electrical Engineering. He is co-author of “Digital Com-
munication”, with D. G. Messerschmitt, Kluwer Academic Press,
1988. His B.S. degree is from Yale University (1979), his masters (S.M.)
from MIT (1981), and his PhD from U.C. Berkeley (1986). From 1979
to 1982 he was a member of technical staff at Bell Labs in Holmde!,
New Jersey, in the Advanced Data Communications Laboratory, where
he did extensive work with early programmable DSPs, and explora-
tory work in voiceband data modem techniques and simultaneous
voice and data transmission.

18

OCTOBER 1988 |EEE ASSP MAGAZINE



