FFT

- Many ways to decompose an FFT
- Simplest is radix-2
- Computation made up of radix-2 butterflies

\[X = A + BW \]
\[Y = A - BW \]
FFT Dataflow Diagram

- Dataflow diagram
 - $N = 64$
 - radix-2
 - 6 stages of computation
Radix 2, 8-point FFT
Radix 2, 32-point FFT
Radix 2, 64-point FFT
Radix 2, 256-point FFT
Radix 4, 16-point FFT
Radix 4, 64-point FFT
Radix 4, 256-point FFT
Radix 2, Decimation-In-Time (DIT)

- Input order “decimated” — needs bit reversal
- Output in order
- Butterfly:

\[
X = A + BW \\
Y = A - BW
\]
Radix 2, Decimation In Frequency (DIF)

- Input in order
- Output “decimated” — needs bit reversal
- Butterfly:
 - Two CPAs
 - Wider multiplier

\[X = A + B \]
\[Y = (A - B) W \]
Radix 4, DIT Butterfly

- Decimation in Time (DIT) or Decimation in Frequency (DIF)
Bit-Reversed Addressing

• Normally:
 – DIT: bit-reverse inputs before processing
 – DIF: bit-reverse outputs after processing

• Reverse addressing bits for read/write of data
 – 000 (0) \Rightarrow 000 (0) # Word 0 does not move location
 – 001 (1) \Rightarrow 100 (4) # Original word 1 goes to location 4
 – 010 (2) \Rightarrow 010 (2) # Word 2 does not move location
 – 011 (3) \Rightarrow 110 (6) # Original word 3 goes to location 6
 – 100 (4) \Rightarrow 001 (1) # Original word 4 goes to location 1
 – 101 (5) \Rightarrow 101 (5) # Word 5 does not move location
 – 110 (6) \Rightarrow 011 (3) # Original word 6 goes to location 3
 – 111 (7) \Rightarrow 111 (7) # Word 7 does not move location
Addressing In Matlab (Especially helpful for FFTs)

- Matlab
 - Matlab can not index arrays with index zero!
- In matlab, do address calculations normally
 - \(AddrA = 0, 2, 4, \ldots \)
 - \(AddrB = 1, 3, 5, \ldots \)
- then use pointers with an offset of one whenever indexing arrays
 - \(AddrA = \ldots\);
 - \(AddrB = \ldots\);
 - \(A = \text{data}(AddrA+1); \)
 - \(B = \text{data}(AddrB+1); \)
 - \(\ldots \)
 - \(\text{data}(AddrA+1) = X; \)
 - \(\text{data}(AddrB+1) = Y; \)
Higher Radices

- Radix 2 and radix 4 are certainly the most popular
- Radix 4 is on the order of 20% more efficient than radix 2 for large transforms
- Radix 8 is sometimes used, but longer radix butterflies are not common because additional efficiencies are small and added complexity is non-trivial (especially for hardware implementations)
I. Common-Factor FFTs

• Key characteristics
 – Most common class of FFTs
 – Also called Cooley-Tukey FFTs
 – Factors of N used in decomposition have common factor(s)

• A) Radix-r
 – $N = r^k$, where k is a positive integer
 – Butterflies used in each stage are the same
 – Radix-r butterflies are used
 – N/r butterflies per stage
 – $k = \log_r N$ stages
I. Common-Factor FFTs

• B) Mixed-radix
 – Radices of component butterflies are not all equal
 – More complex than radix-r
 – Is necessary if $N \neq r^k$
 – Example
 • $N = 32$
 • Could calculate with two radix-4 stages and one radix-2 stage
II. Prime-Factor FFTs

- The length of transforms must be the product of relatively prime numbers
- This can be limiting, though it is often possible to find lengths near popular power-of-2 lengths (e.g., $7 \times 11 \times 13 = 1003$)
- Their great advantage is that they have no W_N twiddle factor multiplications
- Irregular sorting of input and output data
- Irregular addressing for butterflies
III. Other FFTs

• Split-radix FFT
 – When $N = p^k$, where p is a small prime number and k is a positive integer, this method can be more efficient than standard radix-p FFTs
III. Other FFTs

• Winograd Fourier Transform Algorithm (WFTA)
 – Type of prime factor algorithm based on DFT building blocks using a highly efficient convolution algorithm
 – Requires many additions but only order N multiplications
 – Has one of the most complex and irregular structures

• FFTW (www.fftw.org)
 – C subroutine libraries highly tuned for specific architectures

• Goertzel DFT
 – Not a “normal” FFT in that its computational complexity is still order N^2
 – It allows a subset of the DFT’s N output terms to be efficiently calculated
Signal Growth

• Note in DFT equation signal can grow by N times
• This is also seen in the FFT in its growth by r times in a radix-r butterfly, and $\log_r N$ stages in the entire transform: $r^{\log_r N} = N$
• Thus, the FFT processor requires careful scaling
 – Floating point number representation
 • Easiest conceptually, but expensive hardware. Typically not used in efficient DSP systems.
 – Fixed-point with scaling by $1/r$ every stage
 • First stage is a special case. Scaling must be done on the inputs before processing to avoid overflow with large magnitude complex inputs with certain phases.
 – Block floating point
Efficient Computation of the IFFT

- Design a separate processor for IFFTs
- Re-use a forward FFT engine if available to calculate

\[
\text{out} = \text{IFFT}(\text{in})
\]

- Swapping real and imaginary parts:
 \[
 \text{a} = \text{fft}(\text{imag(in)} + i*\text{real(in)});
 \text{out} = (\text{imag(a)} + i*\text{real(a)});
 \]

- Using conjugates:
 \[
 \text{a} = \text{fft}(\text{conj(in)});
 \text{out} = \text{conj(a)};
 \]

- A simple indexing change:
 \[
 \text{a} = \text{fft(in)};
 \text{out} = [\text{a(0)} \text{a(N-1:-1:1)}]; \quad \% \text{with normal indices}
 \text{out} = [\text{a(1)} \text{a(N :-1:2)}]; \quad \% \text{with weird matlab indices}
 \]