NYQUIST FILTERS
Generation of Nyquist Filters

- Use remez(•) in matlab but you must constrain the frequency points and amplitudes in certain ways
 - The frequency vector values must mirror each other in pairs around $\pi/2$
 - For example: $[0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1]$
 $[0 \ 0.11 \ 0.34 \ 0.66 \ 0.89 \ 1]$
 - The amplitude vector values must mirror each other in pairs around a magnitude of 0.50
 - For example: $[1 \ 1 \ 0 \ 0] \ % \ low-pass$
 $[0 \ 0.05 \ 0.10 \ 0.90 \ 0.95 \ 1] \ % \ high-pass$

- Typically coefficients that should be zero will be close but not exactly zero when they are generated by remez(•). Round these to make them exactly zero.
Nyquist Filter Example

- Copy and paste this program into a *.m file and experiment yourself in matlab!

```matlab
% 2015/03/04 Minor edits
% Set these
NumTaps = 21;

% Generate Nyquist filter coefficients
coeffs = remez(NumTaps-1, [0 0.45 0.55 1], [1 0.95 0.05 0]);

figure(1); clf;
stem(-10:10, coeffs);
axis([-11 11 -0.1 0.6]);
title('Nyquist filter coefficients');

figure(2); clf;
freqz(coeffs);
title('Filter frequency response plotted by freqz(); Note -6dB at \pi/2');

% Generate white-noise flat-spectrum signal
in = rand(1, 100000) - 0.5;

figure(3); clf;
psd(in);
axis([0 1 -15 -5]);
title('White-noise input signal to characterize filter; 100,000 samples');

% Pass the white-noise signal through the filter
out = conv(coeffs, in);

figure(4); clf;
psd(out);
title('Filter frequency response plotted by psd(); 100,000 samples');
```
Nyquist Filter Coefficients
Impulse Response

- 21-tap example
- It has significantly reduced hardware with almost half of its coeffs == zero
 - \((N-1)/2\) taps equal to zero for \(N = 4k+1\)
 - \((N-3)/2\) taps equal to zero for \(N = 4k+3\)
The filter’s frequency response plot made by `freqz()`.

Note these critical points to make a comparison later:
- -6 dB at $\pi/2$
- -20 dB at 0.68π
The Second Less-Accurate Method to Measure Filter Response

- "White noise" random signals have a (nearly) flat spectrum
- This example contains 100,000 samples
 - More samples will make the spectrum flatter
- We will pass this signal through our filter and view the output spectrum to gauge the filter’s frequency response
The Second Less-Accurate Method to Measure Filter Response

- This is the spectrum of the white-noise signal after being passed through the filter
- Note approximate values
 - $-6 \, \text{dB at } \frac{\pi}{2}$
 - $-20 \, \text{dB at } 0.68 \, \pi$
 - It matches freqz()!
- Recall that this method is best for actual bit-accurate HW designs
NYQUIST & UPSAMPLING
Nyquist Filters and Upsampled Signals

- First recall standard approach
 - Low-pass filter has cutoff frequency at $\pi/2$
Nyquist Filters and Upsampled Signals

- Nyquist filters have almost half of their coefficients equal to zero
- Upsampled signals have every other sample equal to zero
- Lots of zeros ⇒ an opportunity!
- There are two alignments of data and filter coefficients
 1. The center tap of the filter aligns with a non-zero value in the upsampled data stream
 - The result is a trivial single multiply
 - With clever scaling, the multiplier can be reduced to a power-of-2 shift requiring no hardware whatsoever
 2. The other alignment
 - The result is a simplified filter with almost half the hardware because \((N-1)/2\) of the FIR multiplications are zero times zero
 - \(N\) delay registers are still needed however
Nyquist Filters and Upsampled Signals

- The Nyquist filter can then be implemented very efficiently by dividing the filter into two components that compute the two alignments and reconstructing the output with a 2:1 mux which interleaves samples taken from each filter every other cycle.
Nyquist Filters and Upsampled Signals

- Another great benefit: the two filters are operating in the slower pre-upsampled sampling frequency domain
- Upsampling is performed in the mux

Of course the filtered output is identical when calculated using either approach
Nyquist Filters and Upsampled Signals

• Recall that for common static CMOS circuits,
 \[\text{Power} = C V^2 f \]
• In summary, the optimized merged upsampler/filter using a Nyquist filter yields:
 – Approximately half the total hardware \(\rightarrow C' = C/2 \)
 – Filters operating at half the clock frequency \(\rightarrow f' = f/2 \)
 – 2:1 mux operating at the faster upsampled clock frequency
 – \(\text{Power'} = \text{Power}/4 \)