Education

• Ph.D. Electrical and Computer Engineering University of California, Davis	Expected 2018
• M.S. Electrical and Computer Engineering. GPA: 3.8/4.0 University of California, Davis	2013-2015
• B.E. Electrical Engineering (with highest honors) Hanoi University of Science and Technology (HUST), Hanoi, Vietnam	2007-2012

Technical Skills

CAD Tools: Circuit and Electromagnetic simulators: LTspice, Keysight: ADS and EMPro, ANSYS packages: Maxwell - HFSS and Multiphysics, CST Microwave Studio, Sonnet, AWR Microwave Office; PCB design: Altium Designer, OrCAD.

Skills: Anechoic chamber test, On wafer measurement (PNA/PNA-X),VNA, BERT, Sampling and Real-time oscilloscopes, TDR/High-speed modules, SPI/GPIB Programming

Experience

• Microwave and Microsystems Laboratory, UC Davis	
Graduate Student Researcher	Oct. 2013 - present
- Developing bidirectional, inductive power transfer and communication system through metal	
- Developing voltage tunable multiferroic materials for RF passive compon	ents
- Developed a fully automated fault testing program for Huawei's base sta	tion antenna system
- Developed broadband coaxial balun for 650 W and above power handling	g applications
- Developed ultra-wideband, low loss and compact balun on multilayer organic substrate	
• RF and Microwave Laboratory, HUST	Sept. 2010 - Aug. 2013
Research topic: Development of novel artificial structures for wide-band antenna and passive	
component designs	
Awards and Honors	

• IEEE MTT-S Graduate Fellowship	Jan. 2016
• IEEE MTT-S PhD Student Sponsorship Initiative	May 2015
• UC Davis Spring 2015, 2017 Travel Grant	May 2015, 2017
• Vietnam Education Foundation Fellow	Aug. 2012

Publications (selected)

- Chi Van Pham et al., "Design of 600 W Low Loss Ultra-wideband Ferriteless Balun," *IEEE Transactions on Microwave Theory and Techniques*, vol. pp, no. 99, pp. 1-9, Nov. 2017.
- Chi Van Pham et al., "An Automated Fault Detection Program for Multichannel Bandwidth Limited System," *IEEE 89th ARFTG Microwave Measurement Symposium*, Jun. 2017.
- Chi Van Pham et al., "Development of Helical circular coils for wireless through-metal inductive power transfer," *IEEE Wireless Power Transfer Conference (WPTC)*, May 2017.
- Chi Van Pham *et al.*, "A 46:1 bandwidth ratio balun on multilayer organic substrate," *IEEE International Microwave Symposium (IMS)*, May 2015.
- Chi Van Pham et al., "A Novel CPW-fed Fractal Antenna for UWB with Dual Notched-bands," IEEE Advanced Technologies for Communications (ATC), Oct. 2015.