Tune Example

Fig. 4. Simplified Tuning Loop.

The reference tuning loop uses a Gm cell in feedback as shown in simplified form in Fig. 4 [4]. A constant current I_R is pushed into the Gm cell, producing a voltage $V_{o1} = I_R/g_m$. ϕ_1 and ϕ_2 are two non-overlapping clocks with frequency f_{clock}. During ϕ_1, the capacitor C_1 is charged to V_{o1}. During ϕ_2, the charge on C_1 is transferred to capacitor C_H. Also, a constant current NI_R is drawn from C_H. The average value of the opamp output, V_{o2}, is used to tune the transconductance of the Gm cell.

When the loop reaches steady state, the charge injected onto C_H by C_1 during ϕ_2 equals the charge removed from C_H by NI_R in one clock period. Therefore V_{o2} is periodic and V_{o2} is constant. In steady state,

$$V_{o2} = \frac{I_R}{g_m}$$ \hspace{1cm} (1)

$$Q_{c1} = C_1 V_{o1} = N I_R T = Q_{c2}$$ \hspace{1cm} (2)

where $T = 1/f_{clock}$ is the clock period. Substituting $V_{o1} = I_R/g_m$ into (2) and simplifying gives

$$\frac{C_1}{S_m} = NT = \frac{N}{f_{clock}}$$ \hspace{1cm} (3)

where g_m is the transconductance of the Gm cell. Hence, C_1/g_m depends on the clock frequency f_{clock}, which is derived from a crystal oscillator, and N, the ratio of DC currents that can be accurately defined in a CMOS process.

A more detailed block diagram of the tuning loop is shown in Fig. 5. The clock frequency is 6.25MHz and the DC current ratio N is 0.2. Using these values in (3), $C_1/g_m = 32\mu$A. If C_1 has the same nominal value as $C_2(=0.6\mu F)$ in the AC coupler, then $g_m = 18.4\mu A/V$. With $I_R \leq 5\mu A$ in Fig. 5, the nominal differential output voltage of the Gm cell is $\leq 0.53V$. To have a large g_m tuning range, the Gm cell should allow an output swing of $>1.0V$.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27, NO. 12, DECEMBER 1992

A 10.7-MHz 68-dB SNR CMOS Continuous-Time Filter with On-Chip Automatic Tuning

José Silva-Martinez, Michel S. J. Steyaert, Associate Member, IEEE, and Willy Sansen, Senior Member, IEEE