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A Comparison of Two Approaches
to Feedback Circuit Analysis

Paul J. Hurst, Member, IEEE

Abstract—Two approaches for analyzing single-loop feedback
circuits are compared and contrasted in this paper. One ap-
proach is based on the return-ratio concept, and the other is
based on two-port analysis. A frequent error in many popular
texts—interchanging the computation of return ratio for a depen-
dent source and loop gain of the idealized feedback network—is
discussed. Assumptions commonly made in many texts when
presenting two-port feedback analysis are examined for validity.
Examples are given to highlight the differences between the two
approaches.

1. INTRODUCTION

EEDBACK is an important concept in electrical engineer-

ing. It is usually covered both in control system courses
and electronic circuits courses. New terminology and concepts
(stability, phase margin, open- and closed-loop parameters)
add to the difficulty associated with presenting this material to
students. Analysis of feedback circuits is complicated by the
interaction of the feedback network and the forward amplifier.
Since feedback is present in virtually all analog circuits, it is
important that students develop a good understanding of the
concepts and learn sound analysis methods.

Feedback analysis as presented in most modern circuit
design texts relates the closed-loop properties of feedback
circuits to the open-loop properties of an appropriately defined
forward amplifier a, reverse transmission factor f, and loop
gain af [1}, {2], corresponding to the ideal feedback block
diagram in Fig. 1(a). This analysis method is based on two-
port analysis of the amplifier and feedback networks and
manipulation of the resulting two-ports to match the ideal
feedback block diagram in Fig. 1(a). In the original feedback
text by Bode [3] and in some other circuit texts [4]-[6],
the closed-loop properties of feedback circuits are described
in terms of the return ratio of a dependent source in an
active device. The corresponding block diagram for return-
ratio-based feedback analysis is shown in Fig. 1(b). The two
analysis methods are different, as can be seen by comparing
Fig. 1(a) and (b). For example, the two-port approach yields a
block diagram with all forward transmission lumped into “a.”
In contrast, the return-ratio approach has two forward paths.
As will be shown, the loop transmissions [af in Fig. 1(a) and
RR in Fig. 1(b)] can be quite different. Unfortunately, many
texts confuse or jump between these two different methods of
analyzing feedback circuits. The most common error found is
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Fig. 1. (a) Ideal feedback block diagram, with unilateral forward amplifier
and unilateral feedback. (b) Block diagram associated with the return-ratio
formulas. )

that some texts that present feedback in terms of two ports
assume that af is the same as RR, which is not true. This
paper has been written to clearly point out this problem.

The two feedback circuit analysis techniques employ differ-
ent equations that are reviewed in the next section. Examples
are given in Section III to demonstrate the potential for large
numerical differences between the properly computed loop
gain af of Fig. 1(a) and the return ratio for a controlled
source. Examples are also used to show that af of Fig. 1(a)
is not unique for a given circuit topology; in fact, af can
change when the type of feedback changes. The conditions
under which af and return ratio are essentially identical
are discussed in Section IV. Finally, some of the stated (or
implied) assumptions made in many texts that employ two-port
feedback analysis are examined and shown to be potentially
misleading.

II. BACKGROUND AND EQUATIONS

A. Feedback Circuit Analysis Method 1 — Bode’s Return Ratio

In the original feedback text by Bode [3] and in other
text [4], [5], the close-loop properties of feedback circuits are
described in terms of the return ratio of a dependent source
in an active device. The return ratio for a controlled source
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can be found by: 1) setting all independent sources to zero;
2) selecting a dependent source; 3) breaking the connection
between that source and the rest of the circuit; 4) driving
the circuit at the break with an independent source of the
same type with value s;; and 5) finding the output s, from
the dependent source. Then the return ratio (RR) for that
dependent source is RR = —s, /s, where s may be a current
or a voltage.

The formulas presented in this paper are valid for single-
loop feedback amplifiers [3], [4], [7]. A single-loop feedback
circuit is one in which there is a unique signal path that tra-
verses the feedback loop from a dependent source in an active
device to its controlling signal. For a single-loop amplifier
with multiple active devices, the return ratios for all dependent
sources in the active devices are the same or, equivalently,
destruction of any active device causes the return ratio for
all other dependent sources in the active devices to go to
Z€ro. :

The exact formula for the closed-loop gain of a feedback
amplifier as it relates to the return ratio of a dependent source
in an active device is [3], {4], {7]

b

Ag= —
'=TYRR T

d )
where b is the “forward gain without feedback,” and d is the
direct signal feedthrough. Formulas for b and d will now be
given. Call the value of the dependent source k. (In the case of
a bipolar transistor’s controlled source i = gmUse, W€ have
k = g, and vy, is the controlling signal.) Then the calculation
of b breaks into three parts: b = by - k - by where

by = transfer function from the input to the control signal
evaluated with &k = 0

b, = transfer function from the dependent source to the
output evaluated with the input source set to zero, and

d = transfer function from input to output evaluated with
k=0

From its definition, the return ratio is of the form RR = k-
H, where H is the transfer function from s, to the controlling
signal that is found during RR computation. Therefore, (1)
can be rewritten as

Ag = b

by +d=0b; by +d. (2)

k k
"1+RR 1+kH
A block diagram corresponding to (2) is shown in Fig. 1(b).
RR is the gain around the loop in Fig. 1(b).

Usually, d can be neglected for low-frequency analysis,
but this direct feedthrough term can be important at high
frequencies. If the direct feedthrough d is much smaller than
the term b/(1 + RR), then

Aq ~ b/(1+ RR). 3)

B. Feedback Circuit Analysis Method 2— Two-Port Analysis

Classical feedback analysis relates the close-loop properties
of feedback circuits to the open-loop properties of an appro-
priately defined forward amplifier a, the reverse transmission

IEEE TRANSACTIONS ON EDUCATION, VOL. 35, NO. 3, AUGUST 1992

factor f, and the corresponding loop gain af [1], (2], (8}, [9].
There are many advantages to using this analysis method.

1) The feedback circuit can be viewed as an implementation
of the ideal feedback block diagram [Fig. 1(a)].

2) Simple equations relate the open-loop and closed-loop
properties of the feedback circuit, ie., Z,, and Z;, are
modified by the factor (1 + af).

3) The closed-loop gain expression

_a
T 1l+4af )

is in a “standard” form that allows well-known results from
control theory {10]-[12] to be used to predict closed-loop
behavior from a and f. (The approximate closed-loop formula
(3) from method 1 is of the same form as (4), but @ # b and
af # RR in general)

Real feedback circuits have bilateral feedback networks and
possibly bilateral amplifiers, whereas the blocks in Fig. 1(a)
are a unilateral amplifier and a unilateral feedback network.
Manipulation of a real feedback circuit, such as the one
shown in Fig. 2(a), into an ideal feedback network that has
the same form as Fig. 1(a) is carried out through two-port
analysis [1}, [2], [8], [9]- An example of this procedure for the
shunt—shunt feedback circuit in Fig. 2 is shown in Fig. 3. The
first step is identification of a feedback two-port and a forward
amplifier two-port. With only a few rare exceptions where a
single-loop amplifier employs active feedback, the feedback
two-port will be a passive circuit and all active devices will be
lumped into the forward amplifier two-port. These two-ports
are analyzed separately [Fig. 3(a)], and the interconnection
of these two two-ports is manipulated into ideal feedback
form with one forward-controlled source and one reverse-
controlled source [Fig. 3(b)]'. Fig. 3(b) agrees with the ideal
feedback diagram of Fig. 1(a), since the new ideal forward
amplifier two-port in Fig. 3(b) contains all forward signal
flow and likewise the ideal feedback two-port contains all
reverse signal transfer. (For convenience, the shunt—shunt
feedback configuration and the associated y parameters will
be used in figures and examples. However, the methods are
completely general and can be applied to all four feedback
configurations.)

The parameters a and f can be calculated from the redrawn
two-port in Fig. 3(b). The reverse transmission factor f is just
the 1o term of the two-port in Fig. 3(b). For this shunt—shunt
example, f can be found simply as

f&

el

1

Loy

b
= Y12 = Y12f + Y12a- )]

o

<

(Here and in the remainder of this paper, the source admittance
ys and load admittance ¥y, are assumed to have been absorbed
into 411, and y22,, Tespectively. Also, a y parameter written
as y;; is a “total” parameter; that is, Yij = Yija + Yijr-) The
forward gain a is given by

2 Y

Y21
a - =
e Y11Y22

— Y21a + Y21f
(Y110 + y11£) - (220 + Y225)
(6)

! Sometimes it is impossible to find such two-ports (examples are multiloop
circuits such as Fig. 8.28 of {1] or Fig. 5.11 of [5]).




HURST: FEEDBACK CIRCUIT ANALYSIS

Rp

M\

+ ——O +

i, v R
in in x Vg
O -

Op amp model

(b

Fig. 2. (a) A shunt—shunt feedback circuit. Resistor values are Ry =
200 kQ, Rp = 100 k2. (b) Op amp model. Op amp parameters:
Rina = 50 kQ, Routa = 1 MQ, gm = 1 mQ~L.
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Fig. 3. (a) Two-ports for a and f networks for a shunt—shunt feedback
circuit. (b) The result of manipulating the two-ports in (a) into ideal feedback
form. [Note: yi; = ¥ija + Yijf-]

For a single-loop amplifier with a passive feedback network,
Ya14 Will include the “gain” of all active devices. y21 = Y212+
y215 will include the forward “gain” plus the feedforward
through the passive feedback network. Most texts assume that
[y21a] > |y215|, which is a dangerous assumption at high
frequencies and when considering output loading, as will be
discussed in Section V.
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The loop gain af of Fig. 1(a) is a crucial parameter. For
the shunt—shunt feedback circuit example,
Y21Y12 (y21a + y217) - (Y120 + Y127)

af = — — ) 7
f Y11Y22 (y11a + y115) - (Y220 + Yo2r) M

Some preparatory work is required for the two-port analysis
to succeed [1]. The type of feedback must be identified, and
the correct input and output variables must be identified. A
Thevenin and Norton equivalence operation may be necessary
at the input port, and the correct two-port representation
(y,2,h, or g) must be used.

C. Closed-Loop Impedance Formulas

The formulas for calculating closed-loop impedances will
now be compared.

1) Method 1—Return Ratio: Consider the impedance across
any port of a feedback amplifier. First, pick a dependent
source k in the circuit. Then Blackman’s formula [13] for
the impedance looking into any port is

Z(port when k = 0)
1 + RR(port short circuited)
1 + RR(port open circuited)

Zport(closed loop) =

®)

This expression can be used to compute input and output
impedances. For instance, when computing Z,(closed loop)
for the shunt—shunt feedback circuit in Fig. 2, shorting the
output port “kills” the feedback. Therefore, RR(output port
short circuited) = 0 so (8) reduces to

Zout(k = 0)
1 + RR(output port open circuited)
: ©)
The negative feedback reduces the output impedance, as
expected.
2) Method 2—Two-Port Analysis: Method 2 only provides

Zout(closed loop) =

" formulas for the closed-loop input and output impedances [1].

The formula for output impedance for the shunt output case
(e.g., Fig. 2) is
1

v+ af) (10)

Zous(closed loop) =

It should be emphasized here that (9) and (10) have similar
forms and must give the same value for Z,,(closed loop) for
Fig. 2, but it is not necessarily true that Zou(k = 0) = 1/y22
or that RR(output open circuited) = af as will be shown by
example in the next section.

III. EXAMPLES COMPARING RR AND af

A. A Comparison at Low Frequencies

While either method may be used to analyze or design a
feedback circuit, there are important differences in the closed-
loop formulas incorporating af and RR, as noted above. In
general, af of Fig. 1(a) is not the same as RR of Fig. 1(b).
Many popular texts argue intuitively that measuring the return
ratio for a given dependent source in an active device is,
in some sense, the same as breaking the loop in Fig. 1(a)
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and therefore RR = af [1], {2}, [5], {14]. This is correct
only if the feedback circuit is constructed of a unilateral
forward amplifier and a unilateral feedback network as shown
in the block diagram of Fig. 1 (a). However, few practical
circuits are constructed of, or can be accurately modeled by,
unilateral amplifier and feedback networks. It will be shown
that af =~ RR under certain specific conditions which are
covered in the next section. To clearly point out the potential
for large differences between af of Fig. 1(a) and RR of
Fig. 1(b), they will be calculated at low frequency for the
single-stage feedback circuit of Fig. 4(a). When the loop is
broken at the g,,, generator in the bipolar transistor [Fig. 4(c)};
the return ratio is

Rc || 7o
rr + Rp + Re || 7o
=384 mO 1. 52k0 .
10 kS || 100 kS
"5.2 k0 + 1 QL+ 10 kQ || 100 kQ
= 119.

RR = gprs

(11)
Using (7) with the two-ports in Fig. 4(d) gives
1 1
o= 7] 5
of = 1 1 1 1 1
[7;+ﬁ;+ﬁz] ' [E*LR—F]
- 1

{38.4 mS) 1_ el

]
[TW'FT}EE*,‘ﬁ ‘[5.2k9+1k9]

= 28. (12)

These results are significantly different and point out the
importance of correctly calculating RR or af and then using
the proper associated formulas when calculating closed-loop
parameters. The large difference between RR and a f in this
example exists even though |ya1¢| = 1/Rp = 1/100 k2 <
[y210] = gm = 38.4 mQ~1. The difference can be explained
by the theorem in Section IV.

A second set of sample calculations will now be used to
illustrate that a f, the loop gain in Fig. 1(a), can change for a
circuit when the input source type and location change while
keeping the source-free circuit the same. In contrast, the return
ratio, which does not depend upon the location of the input
source, can give yet another result. First, consider Fig. 2. The
two-port analysis for this shunt—shunt feedback circuit yields

_ (y21a + y215) - (Y120 + yi2f)
(Y110 + Y115) - (Y220 + Y227)
[1 mQ~1 -

(af)su-su

wowm)  [ora)

= 1 1 1 I
[200 wmtsra T 1001kQ] ) [1 aa T 160 m]
=25.7. (13)

If the input source is changed to the voltage source shown
in Fig. 5, then the feedback is series-shunt and h parameters
must be used to manipulate the circuit into a form equivalent
to Fig. 1(a) [1]. The result is

(ha1a + ho1f) - (B12a + hi2f)
(h11a + P11f) - (ho2a + hozy)

(af)ser-su =
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Re=10kohms

Rf=1kohms

Vo

Q1

+
Re=
v
1 Okohm$ o
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' £ i (R Re=

Yin iy Ty 10kohms Yo
- gm*vin _

©

Feedback Network Two-Port

d

Fig. 4. (a) Bipolar circuit with local shunt—shunt feedback. (b) Small-signal
mode! (gm = 384 mQ~', rr = 5.2kQ, and r, = 100 FQ). (c)
Return-ratio computation for the gn, generator. (d) The result of two-port
analysis.

-1 200 k0 o200k
[1 mQ~" - 50 kQ + 5ora 7200 kQ] [100 EQ + 200 kQ]

(50 k€2 + 100 kQ || 200 &S2) - [Tﬁlﬂi + 15 R0 i 360 kQ]
= 66. (14)

Note that these two values differ by more than a factor of
two. The different types of feedback at the input necessitate
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QO -

Fig. 5. Sample series—shunt feedback circuit for calculations. (Component
values are given in Fig. 2).

the change to h parameter two-ports to yield an ideal feedback
network similar to Fig. 3(b), which agrees with Fig. 1(a). As
a result, both a and f changed and, subsequently, af changed.
This observation that af can change when different two-ports
are used has been made previously by Hakim [12, p. 123] and
Mulligan [15].

In contrast, the return ratios for the g,, generator in these
last two feedback circuits are the same since the RR does not
depend on the location of the input source. The RR is easily
calculated by finding the Thevenin equivalent of the op amp’s
gm generator and output resistance Ry, and then applying
a voltage divider formula

Rx || Rina
Rx || Rine + R + Routa
= (1mQ~' 1 MQ)
200 kS || 50 kQ2

© 200 kQ || 50 kQ + 100 k2 + 1 MQ
= 35.1.

RR = (gm . Ro;xta) :

(15)

It should be noted from these last three calculations that the
usual textbook assumptions |yo1 f| < |y21al, |[Y120] K |¥12¢],
Ih21f| < lhzml, and |h12a| < lh12f| [1], [2], [16], which are
true above, are not sufficient to guarantee that RR = af.

Calculation of the closed-loop gain and output impedance
using the equations in Section II can now be compared for the
circuit in Fig. 2. First, the closed-loop gain from the classical
feedback equation is

1 (af)su_su

[ 1+ (af)sy_su

_ 1 (af)su_su
vizs 1+ (af)sy_su

= —100 k92 - [ 5.7 ]

1425.7
= —-96.2 kQ.

Acl =

(16)

The computation of A, using a return ratio is more in-
volved. Taking k = g¢,, of the op amp, the terms b; and by
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must be found with respect to this source.

bl:ﬁﬁ

%in

= Rz“Rina”(RF' + Routa)
— 200 AD150 R|(100 k2 + 1 MQ) = 386 kQ
(%]
gmUin iin;O
— —[1 MQ|(100 k£ + 200 k€50 £S)]
— _122.8 k9.

7

by = = —[Routal|(RF + Rx|[Rina)]

(18)
The direct feedthrough term is
— Routa, . (Rina”RX)
__o  RiuallRx + Routa + RF
gm=Y21.=0

3 1 MQ - (50 k02200 Q)
"~ 50 k200 £Q + 1 MQ + 100 kQ

These values yield a closed-loop gain of

d=2

iin

= 35.1 k2. (19)

_ bi-gm-bs
At="Trrr O
386 kQ- 1m0 - (~122.8 kQ)

35.1 kQ
1+35.1 *

(20)

= —-96.2 kQ

which is the same value computed in (16).

Finally, the computations of the output impedance will be
compared. Using the two-port based expressions, the ouput
impedance is {from (10)]

1
Zout{closed loop) = (Woa T v L+ o))

1
i@ * 1ooRal (1 +25.7)

90.9 kQ
= = . . 2
sgT =34 k0 1)

Using Blackman’s formula, the output impedance is [from

)]

Zout(k = O)
1+ RR(output port open)
1 MQJ|(100 £ + 50 £€[|200 k)

1+35.1
122.8 kQ
= ———— =34 kQ.
36.1 34k

Zout(closed loop)

(22)

B. A Comparison at High Frequencies

RR and af are valuable for determining the stability of
a feedback circuit and for predicting closed-loop frequency
response and step response. The fact that RR(s) can be used
to check stability of a single-loop amplifier was rigorously
established long ago [3]. With method 2, we can predict sta-
bility solely from [1+af(s)] if a(s) is stable. A brief argument
for the stability of a(s) is now given. Consider a single-loop
shunt—shunt feedback amplifier with passive feedback which
has been manipulated into the form of Fig. 3(a). yo1, will
include the effect of all active devices, which are in simple
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cascade if there is more than one active device, and the effect
of interstage passive components. Therefore, ya21, Will have
only left-half-plane (LHP) poles. Also yz;5 will have only
LHP poles since it is computed from the passive feedback
network. Therefore, y21 = Y21a + Y215 is stable. y11 and
192 will have only LHP poles and zeros, since they are one-
port admittances computed with the feedback disabled (e.g.,
Y11 = bin/Vin|vowemo s SEHNG Uous = OV Kkills the feedback). As
a result, & = yo1/y11Yy22 is stable. Therefore, any instability
in the closed-loop gain is a result of right-half-plane roots of
[1 4+ af(s)], which can be detected by applying the Nyquist
stability criterion to af(s). :

There may be significant differences between RR and af
at dc, as demonstrated by the examples above, and at high
frequencies, as will be illustrated by the integrator in Fig. 6(a).
Assuming the unloaded op amp in the figure has a one-pole
voltage gain, A,(s) = Ao/(1+ s/wy), and a large output
resistance Routa (as would be the case for a one-stage CMOS
op amp [17}), the loop gain for this integrator is

[l — sCr|sCr

i + 5Cr (sCin + sCr)

Rout,C
[Ao - SRouta,CF - 52 —g] Cr

af(s) =
[

Wy Crp+Cin

(1+ sRowaCr) |1 + 2

(23)

which has two poles and two zeros—one zero is in the left-
half plane and the other is in the right-half plane. The return
ratio for A, is

Ay(8)/sCin
Routa + 1/SCF + 1/SCin

Cr
Ao - Cr+Cin

- C in )
b+¢me5§%§H1+iﬂ

The RR(s) has two poles and no zeros. Plots of af(s) and
RR(s) are shown in Fig. 6(b) and (c). They differ significantly
at high frequencies: RR — 0 as w — oo but af — —0.9 as
w — oo. Despite the differences between af(w) and RR(w),
both yield a positive phase margin since the circuit is stable.

Differences between RR(s) and af(s) are not surprising
since the formulas for RR and af are significantly different,
as will be clearly shown in the next section. In the exam-
ple above, a(s) includes feedforward through the feedback
network (Y21 = Y210 + Y21£), SO a(s) and af(s) have zeros
which do not appear in RR(s). This feedforward is handled
solely by d(s) in method 1.

Techniques for exactly simulating RR(s) and af(s) using
SPICE are described in [18]. The ability to exactly simulate
RR and af is valuable for circuit designers and may be useful
as a teaching tool, as it can help to convince the students that
the typical approximations, which are often used to simplify
hand calculations, are not needed during simulation.

RR(s) =

(24)

IV. WHEN DOES RR = af?

Since RR and af are often confused, it is useful to know
when the return ratio for a dependent source in an active device
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Fig. 6. (a) Shunt—shunt feedback circuit (integrator.) Op amp parameters:
Ay(s) = 1000/(1 + s/2.5€7), Routa = 10 MQ, and Rin, = 002 Plots
of (b): af(s); and (c) RR(s) for the integrator circuit in (a). (Dashed lines
plot the phase.)

approximates the loop gain af of Fig. 1(a) that results from
two-port analysis. This is the subject of the following theorem.

THEOREM? Consider a single-loop feedback amplifier that
can be modeled by Fig. 3(a). Assume that the values of all
the controlled sources associated with all the active devices
enter yz1, in simple product form. Then the return ratio
for the dependent source Y214, RR(y214), Will be an accu-
rate approximation of the loop gain af of Fig. 1(a) if: 1)
ly21a]l > |y21¢l; and 2) [(y110 + Y1) - (Y220 + Y225)| >
|(y124 + y127) - y215|, where y should be replaced by the

2This theorem can be modified in a straightforward way to handle all four

- possible two-port models using y, z, g, or h parameters as required [1].



HURST: FEEDBACK CIRCUIT ANALYSIS

appropriate two-port parameter— ¥, 2,9, Of h [1]—for the
feedback circuit under consideration.

It is assumed that source and load admittances, ys and yr,
have been absorbed into y11, and ya2,. The condition that
RR(y214) has the values of the controlled sources in simple
product form (e.g., RR(Y21a) X gm1 * gm2 - gma3) assures that
RR(y214) equals the RR for any dependent source associated
with any active device in the circuit [3], {4].

The theorem gives the conditions, in terms of two-port
parameters, under which RR and a f are approximately equal,
and it can be proved by calculating the RR for y31, and
comparing it to a f. Computing RR(y21,) in Fig. 3(a) yields®

RR(y21a) =
Y10 - (Y124 + Y12f)
(y22a + Y227) (Y11a + Y11¢) — Y217 (Y120 + Y127)
Yo1a - (Y120 + Y12f) '

N ( a t
(y220 + Y225)(W11a + Y115) [1 — (yzizﬂi y;’f‘;(ymyf;)m)]

(2%

This formula is slightly different than (af)gy_gg in (13).
These equations for RR(y214) and (af)gy_sy Will give nearly
equal results if |yo214] > lya15| so that yo1a + Y215 = Y21as
which is the first condition in the theorem, and if the term
in large brackets in the denominator above is approximately
equal to one, which is true if

Y12q + Y12f
Ylia + Y11f

2

Yorf
Y22a + Y2251

<1.  (26)

This inequality is equivalent to the second condition in the
theorem. For the examples presented above, v = 0.756 for
the circuit in Fig. 4(a) and v = 0.26 for the circuit in Fig. 2;
neither of these values are small compared to unity, which
leads to RR(y214) # af.

The significance of (26) can be explained with the aid of
Fig. 7. The computation of af can be viewed as a return-ratio
computation for the unilateral source y»; as shown in Fig. 7(b)
(this will be discussed again later). In this situation, ye1, and
ya15 have been combined since they are in parallel. Under the
assumption |ya1a| 3> |y21f), Y21y can be safely neglected.
On the other hand, y215 is isolated from Y210 during the
computation of the return ratio for 21, [Fig. 7(@)}; therefore,
the assumption |y214] 3> |y215] is of little significance. In this
case, the yo17 generator is connected to 22, so the output
voltage v, to the right of the break in Fig. 7(a) is given by

vy = o = B2y, @7
Y22 Y22
The voltage generated at the input port is vip = —¥12 - Vo /Y11
which leads to
Vo = 4 Yoy vy = K Y21£Y12 v, (28)
Y22 Ya2 Y22 Y2211

3In this equation, the term Y120 + Y125 aPPEAss. Y¥12a could be ignored by
assuming that |y124] < |y12 £|, but if the circuit is a single-loop amplifier,
the y124 term must be from global feedback inside the amplifier network.
Therefore, it is best to keep this term although in practice it is usually
negligible when compared to y1o5.
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Fig. 7. Comparing (a) RR(y214) and (b) a f computations for a shunt—shunt
feedback circuit (see Fig. 3) [Note: y;; = ¥ija + Yijf-l

If the last term on the right-hand side is small compared to
the left-hand side, which is true when (26) is satisfied, then
the effect of the yo15 generator in the RR(y214) calculation
is negligible. Therefore, ya15 can be deleted from Fig. 7(b),
making Fig. 7(a) and (b) identical, which leads to a f=RR.

Perhaps (27) most clearly explains why RR(y214) does
not equal af. If the loop in Fig. 1(a) is broken, the signal
flows around the loop in one direction only. However, when
RR(y21,) is found, the feedback network sends signal both
forward and backward, which violates the ideal block diagram
in Fig. 1(a). Therefore, it is clear that af can be found only
after manipulation of the two-ports into the form shown in
Fig. 3(b), which has the same signal flow as Fig. 1(a).

There is one easily verified situation that gives RR = af,
namely when the output variable is the voltage across a
controlled voltage source or the current through a controlled
current source. This will be shown by example using Fig. 6(2).
With the output taken as the voltage V'1 across the voltage-
controlled voltage source, the two-port describing the forward
amp a would have yaz, = 0o 7! and ga14 = 00 Q-1 with
Y21a/Y224 = Ap and Y12 = 0 QL. These values satisfy the
conditions of the theorem, therefore leading to RR = a'f’,
where a’ f' is the loop gain of Fig. 1(a) if the output is voltage
V1

V. EXAMINING A COMMON ASSUMPTION IN
FEEDBACK ANALYSIS

A common assumption in feedback analysis is that o5,
the feedforward through the feedback network, is negligible
and therefore can be ignored. This is a somewhat danger-
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ous simplification for two reasons. First, the assumption is
motivated by the observation that Y21, is 2 transconductance
due to active elements, whereas y2; 5 is a feedforward through
a passive network. Therefore, |y215| will usually be smaller
than |ya14|. Although this argument seems reasonable, it is not
always correct. Taking for example the shunt—shunt feedback
circuit in Fig. 2, the forward amplifier is typically designed to
have a high voltage gain, which can be achieved with a low
transconductance y21, and large output resistance. (This is, in
fact, the case in many CMOS one-stage op amps [17].) In such
a case, it is quite possible that |y21a] is not necessarily much

larger that |y2;¢|. So, the assumption |y21a| 3> |y21¢| must be |

checked for validity.

Furthermore, ignoring the feedforward term y2;; can lead
to an error when estimating the output loading due to the feed-
back network that the forward amplifier “sees.” The problem
will be illustrated by Fig. 8 using the integrator in Fig. 6. If the
" yo15 term is ignored, then the two-port reduces to that shown
in Fig. 8(b). This reduced two-port gives the impression that
the output loading due to the feedback network is the feedback
capacitance Cr. If yo1 5 is retained, then the effective loading
of the feedback circuit on the forward amplifier can be found
by calculating the ratio of the output voltage v, to the load
current 7; flowing into the feedback network in Fig. 8(a)

u = sCrv, + yo15v; = sCrv, — M’UO
iin=0A Y11a + Y115

(SC'F)2 SCFCi

= sCFvo — = 29

sOrvo = o ser = G g @

Therefore,

: di sCrC;

b load t tput) = — — ) 30

y( fb loading at output) vl e (30)

That is, the output loading due to the feedback network is Cr
in series with C;, which is the same output loading as would
result from a RR analysis. [Breaking the loop in Fig. 6(a)
gives a circuit with the series connection of Cg and Cj,
connected to the output as shown in Fig. 8(c).] The point is
that, even if |yo1a| > |y21f|, Y21 must be retained when
considering the feedback loading at the output because, from
an output loading point of view, ya15 is not in parallel with
Y21 and therefore it is not reasonable to neglect it.

VI. VIEWING TWO-PORT FEEDBACK ANALYSIS AS A
VERSION OF RR ANALYSIS

Feedback theory was originally developed by Bode using
the return-ratio concept, with return ratios being computed
for the controlled sources associated with vacuum tubes. It is
important to realize that the two-port-based-analysis formulas
can be derived by generalizing the return-ratio analysis. If
the feedback circuit is first put into ideal feedback form
using two-port analysis such as in Fig. 3(b), and then the
return-ratio formulas are applied with respect to the combined
controlled source y2; = ¥21a + Y215 as shown in Fig. 7(b),
the resulting return-ratio-based formulas will be exactly the
same as the two-port-based formulas. RR(y21) will be the
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Fig. 8. Finding the output loading due to the feedback network in Fig. 6. (a)
Using the two-port analysis to find the current ¢; flowing into the output port of
the feedback network; (b) same as (a) with the o 5 controlled source deleted;
and (c) output loading is clearly Cp in series with Ci, when computing RR.

same as af since there is no feedforward through the modified
ideal feedback network in Fig. 3(b), and therefore the two
conditions of the theorem are satisfied with respect to the
modified network of Fig. 3(b).

VII. CONCLUSION

The two most common feedback circuit analysis meth-
ods have been summarized. Either analysis technique alone
is sufficient for analyzing single-loop feedback circuits. A
working knowledge of both analysis methods is beneficial,
but covering both in depth is probably too much material
for any one course in circuit design. The two methods can
give widely different intermediate results but always agree on
the final closed-loop parameters. This paper has been written
because, unfortunately, one of the following errors appears
in many texts: 1) Feedback is introduced with Fig. 1(a) and
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then all subsequent analysis of feedback circuits is carried
using Bode’s return-ratio theory. However, it is incorrectly
stated that the RR for a controlled source is the same as
af of Fig. 1(a) [3], [5]; or 2) Feedback is introduced with
Fig. 1(a) and then two-port analysis is employed to show that
feedback circuits can be manipulated to agree with the ideal
block diagram. However, an intuitive argument is incorrectly
used to conclude that RR of a controlled source is the same
as af of Fig. 1(2) [1], [2], [6], [14]. Mixing analyses can be
troublesome. For instance, incorrectly using RR of (15) for
af in (21) leads to an incorrect result for Zoyt.

Whereas computation of RR has the intuitive feel of break-
ing the loop and measuring the loop transmission, it is incorrect
to make the blanket statement that RR for a dependent source
is the same as af of Fig. 1(a). Examples have been included
to show that not only is af # RR, but that af can change
if the type of feedback is changed for a given circuit. A
" theorem has been presented that gives the conditions under
which af ~ RR. These two conditions are more involved
than the typical assumptions made in textbooks that present
feedback using two-port analysis. Finally, the assumption that
Y215 can be neglected has been examined and shown to lead to
an incorrect estimate of the loading of the feedback network
on the forward amplifier.

It is hoped that the material presented here will help authors
of circuit texts to avoid confusing and potentially misleading
statements when discussing the ideal feedback block diagram
of Fig. 1(a) in the context of two-port and/or return-ratio
analysis.
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