Link Throughput of Multi-Channel Opportunistic Access with Limited Sensing

Keqin Liu, Qing Zhao
Department of Electrical and Computer Engineering
University of California, Davis, CA 95616

Supported by NSF and ARL-CTA.
Multi-Channel Opportunistic Access

Opportunities

Channel 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Channel State</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(S_1(1) = 0)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(S_1(2) = 1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(S_1(3) = 0)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(S_1(T) = 0)</td>
<td></td>
</tr>
</tbody>
</table>

Channel N

<table>
<thead>
<tr>
<th>Time</th>
<th>Channel State</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(S_N(1) = 1)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(S_N(2) = 0)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(S_N(3) = 0)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(S_N(T) = 0)</td>
<td></td>
</tr>
</tbody>
</table>

- Opportunistic Access: adapt to time-varying channel state.
- Channel State: fading condition, presence of primary users, presence of jammers (jamming/anti-jamming).
- Limited Sensing: can only sense and access one channel in each slot.

Sensing Strategy: Which channel to sense?
Gilbert-Elliot Channel Model1

- \(N \) i.i.d. Gilbert-Elliot channels.

\[
\begin{array}{c}
\text{(busy)} \\
\text{(idle)}
\end{array}
\]

\[
\begin{array}{c}
p_{00} \\
p_{01} \\
p_{10} \\
p_{11}
\end{array}
\]

- **Sensing Policy** \(\pi_s \)
 - Choose the sensing action \(a(t) \) in each slot \(t \)

- **Immediate Reward**
 - If the chosen channel \(a \) is idle, a unit reward is accrued.
 - If the chosen channel \(a \) is busy, no reward; wait until the next slot.

- **Objective:** choose sensing policy \(\pi_s \) to
 \[
 \max \ E[\text{throughput}]
 \]

Sensing Policy: Gaining Access vs. Gaining Information

Optimal Sensing Policy: sequential decision-making

- Each sensing outcome provides information on the state of the system.
- $a(t)$ should be based on the entire observation history.
- $a(t)$ results in an immediate reward $R(t)$ and an observation $O(t)$ that affects future actions and reward.
- Optimal $a(t)$ achieves the best tradeoff between gaining immediate reward and gaining spectrum information.
Restless Multi-armed Bandit

Restless Multi-armed Bandit Problem

- A bandit consists of N independent arms.
- At each slot t, the state of arm i is $Z_i(t)$.
- Given system state $Z(t) = \{Z_1(t), \cdots Z_N(t)\}$, activate an arm i and get a reward $R_i(Z_i(t))$ in slot t.
- The state of active arm i transits according to a Markov chain, the state of each passive arm transits according to another Markov chain.

Objective

Decide which arm to activate in each slot to maximize the expected long-term total reward.
Restless Multi-armed Bandit Formulation

- Each channel is considered as an arm.
- If channel i is sensed, then it is “activated”.
- The state of each arm should be the observation history of that channel.
- Sufficient statistic: the a posterior distribution (belief vector) $\Omega(t)$ that exploits the entire observation history.

$$\Omega(t) = [\omega_1(t), \cdots, \omega_N(t)]$$

$$\omega_i(t) = \Pr[\text{channel } i \text{ is idle in slot } t \mid \text{observations } O(1), \cdots, O(t - 1)]$$

- The state of arm i in slot t is $\omega_i(t)$.
- The expected immediate reward obtained when activate arm i is $\omega_i(t)$.
Markovian Transition of Belief and Value Function

The belief vector transits according to Markov processes.

If channel i is activated in slot t:

$$
\omega_i(t+1) = \begin{cases}
p_{11}, & \text{if } O(t) = 1
p_{01}, & \text{if } O(t) = 0
\end{cases}
$$

(1)

If channel i is made passive in slot t:

$$
\omega_i(t+1) = \omega_i(t)p_{11} + (1 - \omega_i(t))p_{01}.
$$

(2)

Value Function: let $V_t(\Omega)$ be the maximum expected total reward accumulated from slot t given the current belief vector Ω.

$$
V_t(\Omega) = \max_a (\omega_a + \mathbb{E}_{S_a} V_{t+1} (T (\Omega|a, S_a))).
$$

(3)

Throughput as Average Reward:

$$
U(\Omega) = \lim_{T \to \infty} \frac{1}{T} V_1(\Omega)
$$

(4)
The Myopic Sensing Policy

Myopic policy: maximize immediate reward $R(t)$

$$a(t) = \arg \max_{a=1,\ldots,N} R_a(t)$$

$$= \arg \max_{a=1,\ldots,N} \Pr[a \text{ is idle} \mid \text{observations}]$$

$$= \arg \max_{a=1,\ldots,N} \omega_a$$ \hfill (5)
Structure of Myopic Sensing for i.i.d. Markov Processes

The Structure of Myopic Sensing Policy: \(p_{1,1} > p_{0,1} \)

- Stay in the same channel if it is idle and switch if it is busy.
- Switch to the channel visited the longest time ago.
- A sufficient statistic: current observation (no belief update).
- No need to know the transition probabilities.
- Automatically tracks model variations.

Structure of Myopic Sensing for i.i.d. Markov Processes

The Structure of Myopic Sensing Policy: \(p_{0,1} > p_{1,1} \)

- Stay in the same channel if it is busy and switch if it is idle.
- Among channels visited an even number of slots ago, choose the most recent.
- If no such channels, choose the one visited the longest time ago.
- A sufficient statistic: current observation and last visit to each channel.
- No need to know the transition probabilities.
- Automatically tracks model variations.
Optimality of Myopic Sensing for i.i.d. Markov Processes

The Optimality of Myopic Sensing Policy3,4

- Proven to be optimal for i) $N = 2$ and $N = 3$; ii) $N > 3$ with $p_{11} > p_{01}$.

Link Throughput Limit

Throughput limit is the maximum average reward.

\[
U(\Omega_o) = \lim_{T \to \infty} \frac{V_1(\Omega_o)}{T},
\]

Transmission Period: The time the user stays in the same channel.

- For \(N = 2 \), \(\{L_k\}_{k=1}^{\infty} \) is a first-order ergodic Markov chain.
- For \(N > 2 \) and \(p_{11} \geq p_{01} \), \(\{L_k\}_{k=1}^{\infty} \) is an \((N - 1) \)th-order ergodic Markov chain.
The reward obtained in a transmission period: \(p_{11} > p_{01} \)

Throughput limit is determined by the average length of a transmission period.

Link Throughput Limit

Theorem 1 Let \(\bar{L} = \lim_{k \to \infty} \frac{\sum_{k=1}^{K} L_k}{K} \) denote the average length of a transmission period. The throughput limit \(U(\Omega_o) \) is given by

\[
U(\Omega_o) = \begin{cases}
1 - \frac{1}{\bar{L}}, & p_{11} \geq p_{01} \\
\frac{1}{\bar{L}}, & p_{11} < p_{01}
\end{cases}
\]
(7)

Proof. When \(p_{11} \geq p_{01} \), the user collects \((L_k - 1) \) units reward during each transmission period \(L_k \).

\[
U(\Omega_o) = \lim_{K \to \infty} \frac{\sum_{k=1}^{K} (L_k - 1)}{\sum_{k=1}^{K} L_k} = 1 - \frac{1}{\lim_{K \to \infty} \frac{\sum_{k=1}^{K} L_k}{K}} = 1 - \frac{1}{\bar{L}},
\]
(8)

When \(p_{11} < p_{01} \), the user collects 1 unit reward during each transmission period \(L_k \).

\[
U(\Omega_o) = \lim_{K \to \infty} \frac{\sum_{k=1}^{K} 1}{\sum_{k=1}^{K} L_k} = \frac{1}{\lim_{K \to \infty} \frac{\sum_{i=1}^{K} L_k}{K}} = \frac{1}{\bar{L}}.
\]
(9)
Link Throughput Limit for $N = 2$

If $N = 2$, the average length \bar{L} of a transmission period is obtained by the stationary distribution of $\{L_k\}_{k=1}^{\infty}$.

Theorem 2 For $N = 2$, the throughput limit U is given by

$$U = \begin{cases}
1 - \frac{1-p_{11}}{1+\bar{\omega}-p_{11}}, & p_{11} \geq p_{01} \\
\frac{p_{01}}{1-\bar{\omega}+p_{01}}, & p_{11} < p_{01}
\end{cases},$$

$$\bar{\omega} = \frac{p_{01}^2}{1 + p_{01}^2 - A},$$

where $A = \frac{p_{01}}{1+p_{01}-p_{11}}(1 - \frac{(p_{11}-p_{01})^3(1-p_{11})}{1-(p_{11})^2+p_{11}p_{01}})$.

$$\bar{\omega}' = \frac{B}{1 - p_{11}^2 + B},$$

where $B = \frac{p_{01}}{1+p_{01}-p_{11}}(1 + \frac{(p_{11}-p_{01})^3(1-p_{11})}{1-(1-p_{01})(p_{11}-p_{01})})$.
Link Throughput Limit for $N > 2$

- For $N > 2$, $\{L_k\}_{k=1}^{\infty}$ is a higher order Markov chain; the average length \bar{L} of a transmission period is difficult to obtain.

- Construct first-order Markov chain that stochastically dominates or being dominated by $\{L_k\}_{k=1}^{\infty}$
Theorem 3 For \(N > 2 \), we have the following lower and upper bounds on the throughput limit \(U \).

- **Case 1:** \(p_{11} \geq p_{01} \)

\[
\frac{C}{C + (1 - D + C)(1 - p_{11})} \leq U \leq \frac{\omega_o}{1 - p_{11} + \omega_o},
\]

where \(\omega_o = \frac{p_{01}}{p_{01} + p_{10}}, \ C = \omega_o(1 - (p_{11} - p_{01})^{N}), \ D = \omega_o(1 - \frac{(p_{11} - p_{01})^{N+1}(1-p_{11})}{1-(p_{11})^2 + p_{11}p_{01}}) \).

- **Case 2:** \(p_{11} < p_{01} \)

\[
\frac{p_{10}^2}{p_{01}H - E} + 1 \leq U(\Omega_o) \leq \frac{p_{10}^2}{p_{01}G - E} + 1
\]

where \(E = p_{10}^2(1 + p_{01}) + p_{01}(1 - F) \),

\[
F = (1 - p_{01})(1 - \omega_o)(\frac{1}{2 - p_{01}} - \frac{p_{01}(p_{11} - p_{01})^4}{1-(p_{11} - p_{01})^2(1-p_{01})^2}),
\]

\[
G = (1 - \omega_o)(\frac{1}{2 - p_{01}} - \frac{p_{01}(p_{11} - p_{01})^6}{1-(p_{11} - p_{01})^2(1-p_{01})^2}),
\]

\[
H = (1 - \omega_o)(\frac{1}{2 - p_{01}} - \frac{p_{01}(p_{11} - p_{01})^{2N-1}}{1-(p_{11} - p_{01})^2(1-p_{01})^2}).
\]
Link Throughput Limit for $N > 2$

Monotonicity
For both cases, the difference between the upper and lower bounds monotonically decreases with N; for $p_{11} \geq p_{01}$, the lower bound converges to the upper bound as $N \to \infty$.

Tightness of bounds ($N = 5$)
Link Throughput Limit for $N > 2$

The rate that the lower bound approaches to the upper bound

The following graph shows the ratio of the difference between lower and upper bounds when $N = 10$ to that when $N = 3$.

- The throughput of a multi-channel opportunistic system with single-channel sensing quickly saturates as N increases.
Conclusion

- **Main Results**

 - A Restless Multi-armed Bandit Formulation.

 - Closed-form expressions for link throughput limit when $N = 2$.

 - Tight upper and lower bounds of link throughput limit when $N > 2$.

 - Link throughput limit quickly saturates as N increases.