Logarithmic Weak Regret of Non-Bayesian
Restless Multi-Armed Bandit

Haoyang Liu, Keqin Liu, Qing Zhao

Department of Electrical and Computer Engineering
University of California, Davis, CA 95616

Supported by NSF and ARO.
Cognitive Radio for Dynamic Spectrum Access

Dynamic Spectrum Access under Unknown Model:

- N independent channels.
- Choose K channels to sense/access in each slot.
- Accessing an idle channel results in a unit reward.
- Channel occupancy: a stochastic process with unknown parameters.
 - i.i.d. Bernoulli with unknown mean θ_i.
 - Markovian with unknown transition probabilities.
Multi-Armed Bandit

Multi-Armed Bandit:

- N arms and a single player.
- select one arm to play at each time.
- Unknown reward statistics.
- Maximize the long-run reward.

Exploitation v.s. Exploration

- Exploitation: play the arm with the largest sample mean.
- Exploration: play an arm to learn its reward statistics.
i.i.d. Reward Model
i.i.d. Reward Model

Performance Measure: Regret

- $\Theta \overset{\Delta}{=} (\theta_1, \cdots, \theta_N)$: unknown reward means.

- $\theta^{(1)}T$: max total reward (by time T) if Θ is known (always play the best arm).

- $V_T^\pi(\Theta)$: total reward of policy π by time T.

- Regret (cost of learning):

$$R_T^\pi(\Theta) \overset{\Delta}{=} \theta^{(1)}T - V_T^\pi(\Theta) = \sum_{i=2}^{N} (\theta^{(1)} - \theta^{(i)}) \mathbb{E}[\text{time spent on } \theta^{(i)}].$$

Objective: minimize the growth rate of $R_T^\pi(\Theta)$ with T.

\[\text{sublinear regret} \implies \text{maximum average reward } \theta^{(1)}\]
Classic Results

- Lai&Robbins’85:
 \[R_T^*(\Theta) \sim \sum_{i=2}^{N} \frac{\theta^{(1)} - \theta^{(i)}}{I(\theta^{(i)}, \theta^{(1)})} \log T \quad \text{as } T \to \infty. \]

 KL divergence

- Agrawal’95, Auer&Cesa-Bianchi&Fischer&Informatik’02:
 - Sample-mean based index policies.
 - UCB-1: index = \(\bar{s}_i + \sqrt{\frac{2 \log t}{t_i}} \).
Rested Markovian Reward Model
Restured Markovian Reward Model

Restured Markovian Reward Model:
- Rewards from successive plays form a MC with unknown transition P_i.
- Arm state is frozen when not played.

Optimal Performance under Known Model:
- Best arm: the largest reward mean $\theta^{(1)}$ in steady state.
- Optimal policy: play the best arm except a finite time to exploit transient states of other arms.
- Optimal performance: $\theta^{(1)}T + O(1)$.

Regret:
\[
R_T^\pi = \sum_{i=2}^{N} (\theta^{(1)} - \theta^{(i)})\mathbb{E}[\text{time spent on arm } i] + O(1).
\]

Policies Achieving Logarithmic Regret:
- Extension of Lai-Robbins policy (Anantharam&Varaiya&Walrand’87).
- Extension of Auer’s UCB1 policy (Tekin&M.Liu’10)
Restless Multi-Armed Bandit
Restless MAB under Unknown Dynamics

Restless MAB under Unknown Dynamics:

- Rewards from successive plays form a MC with unknown transition P_i.
- When passive, arm evolves a.t. an arbitrary unknown random process.

Difficulty:

- Restless MAB under known model itself is intractable in general.
- The optimal policy under known model is no longer staying on one arm.

Weak Regret:

- Defined with respect to the optimal single-arm policy under known model:
 \[R_T^\pi = T\theta^{(1)} - V_T^\pi + O(1). \]
- The optimal performance under known model $\geq T\theta^{(1)}$.
Restless MAB under Unknown Dynamics

Challenges:

- Need to learn $\{\theta_i\}$ from contiguous segments of the sample path.
- Need to limit arm switching to bound the transient effect.
Restless UCB (RUCB):

- Epoch structure with geometrically growing epoch length
 \Rightarrow arm switching limited to \log order.

- Exploration and exploitation epochs interleaving for fast error decay:
 - In exploration epochs, play all arms in turn.
 - In exploitation epochs, play the arm with the largest index $\bar{s}_i + \sqrt{\frac{L \log t}{t_i}}$.
 - Start an exploration epoch iff total exploration time $< D \log t$.
The Logarithmic Regret of RUCB

Logarithmic regret of RUCB:

- Uniformly bounded leading constant determined by D and L.
- Choosing D and L requires
 - an arbitrary (nontrivial) lower bound on the eigenvalue gaps of P_i.
 - an arbitrary (nontrivial) lower bound on $\theta^{(1)} - \theta^{(2)}$.

Near logarithmic regret in the absence of system knowledge:

- For any increasing sequence $f(t)$,
 $$R_{RUCB}(t) \sim O(f(t) \log t)$$
- by choosing $D(t)$ and $L(t)$ as increasing sequences satisfying
 $$D(t) = f(t), \quad \frac{L(t)}{D(t)} \to 0.$$
Conclusion

Restless MAB under Unknown Dynamics:
- Reward from successive plays forms a MC with unknown transition P_i.
- When passive, arm state evolves according to an arbitrary unknown random process.

Restless UCB Policy:
- Logarithmic regret with arbitrary (nontrivial) bounds on certain parameters.
- Arbitrarily close to log regret in the absence of any knowledge.

Related Work on Single-Player Restless MAB:
- Tekin&Liu’11: logarithmic weak regret.
- Dai&Gai&Krishnamachari&Zhao’11: near-log strict regret (a special RMAB).
- Extension to decentralized RMAB with multiple players (Liu&Liu&Zhao’11)
 - Distributed decision-making using only local observations.
 - Players activating the same arm collide with reward penalty.
 - Exogenous and endogenous restless models.