A Class of Restless Bandit Problems: Indexability and Optimality of Whittle’s Index

Qing Zhao

Department of Electrical and Computer Engineering
University of California at Davis

Supported by NSF, ARL, ARO.
History
Clinical Trial (Thompson’33)
Web Search (Radlinski&etal'08)
Playing Golf with Multiple Balls *(Dumitriu&etal'03)*
Multi-Agent System (Whittle’88, LeNy&etal’08)
Cognitive Radio (Zhao & et al' 05)

- N independent Gilbert-Elliot channels:

Channel 1

Channel N

Oppportunities

p_{00} (busy)

p_{01}

p_{10}

p_{11}

(idle)
Information vs. Immediate Payoff

“Bandit problems embody in essential form a conflict evident in all human action: information versus immediate payoff.”

— P. Whittle (1989)
Information vs. Immediate Payoff

A Two-Armed Bandit:

- Two coins with unknown bias θ_1, θ_2.
- Head: reward $= 1$; Tail: reward $= 0$.
- Objective: maximize total reward over n flips.

An Example (Berry & Fristedt ’85):

- $\theta_1 = \frac{1}{2}, \theta_2 = \begin{cases} 1, & \text{with probability } \frac{1}{4} \\ 0, & \text{with probability } \frac{3}{4} \end{cases}$

- To gain immediate payoff: flip Coin 1 indefinitely.
- To gain information: flip Coin 2 initially.
Non-Bayesian Formulation

- (θ_1, θ_2) are treated as unknown deterministic parameters.
- $V_n^\pi(\theta_1, \theta_2)$: total reward of policy π.
- $n \max_{\theta_{\text{max}}} \{\theta_1, \theta_2\}$: total reward if (θ_1, θ_2) were known.
- The cost of learning (regret):

 \[C_n^\pi(\theta_1, \theta_2) \triangleq n\theta_{\text{max}} - V_n^\pi(\theta_1, \theta_2) = (\theta_{\text{max}} - \theta_{\text{min}})\mathbb{E}[\text{time spent on } \theta_{\text{min}}] \]

- Objective: $\min_\pi C_n^\pi(\theta_1, \theta_2)$.
Classic Results under Non-Bayesian Formulation

- Lai & Robbins' 85:
 \[C_n^*(\theta_1, \theta_2) \sim \frac{\theta_{\text{max}} - \theta_{\text{min}}}{I(\theta_{\text{min}}, \theta_{\text{max}})} \log n \quad \text{as} \quad n \to \infty \]
 \(KL \text{ distance} \)

- Anantharam & Varaiya & Walrand' 87:
 - extension from single play to multiple plays.
 - extension from i.i.d to Markovian reward processes.
Classic and Recent Results under Non-Bayesian Formulation

- **Lai & Robbins’85:**

 \[C_n^*(\theta_1, \theta_2) \sim \frac{\theta_{\max} - \theta_{\min}}{I(\theta_{\min}, \theta_{\max})} \log n \quad \text{as} \quad n \to \infty \]

 - **KL distance**

- **Anantharam, Varaiya, & Walrand’87:**
 - extension from single play to multiple plays.
 - extension from i.i.d to Markovian reward processes.

- **Liu & Zhao’09:**
 - extension to *distributed* multiple players
 - *(distributed decision-making using only local observations)*
 - decentralized policy achieving *the same* \(\log n \) order of the regret.
 - fairness among players.
Bayesian Formulation

- (θ_1, θ_2) are random variables with prior distributions $(f_{\theta_1}, f_{\theta_2})$.

- Policy π: choose an arm based on $(f_{\theta_1}, f_{\theta_2})$ and the observation history.

- $R_\pi(t)$: the reward obtained at time t.

- The total discounted reward over an infinite horizon:

$$V_\pi(f_{\theta_1}, f_{\theta_2}) \triangleq \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \beta^t R_\pi(t) | (f_{\theta_1}, f_{\theta_2}) \right], \quad (0 < \beta < 1)$$

- Objective: $\max_\pi V_\pi(f_{\theta_1}, f_{\theta_2})$.
Bandit and MDP

Multi-Armed Bandit as A Class of MDP: (Bellman’56)

- N independent arms with fully observable states $[Z_1(t), \cdots, Z_N(t)]$.
- One arm is activated at each time.
- Active arm changes state (known Markov process); offers reward $R_i(Z_i(t))$.
- Passive arms are frozen and generate no reward.
Bandit and MDP

Multi-Armed Bandit as A Class of MDP: *(Bellman’56)*

- \(N \) *independent* arms with *fully observable* states \([Z_1(t), \ldots, Z_N(t)]\).
- *One* arm is activated at each time.
- Active arm changes state (*known Markov process*); offers reward \(R_i(Z_i(t)) \).
- Passive arms are frozen and generate no reward.

Why is sampling processes with unknown distributions an MDP?

- The state of each arm is the *posterior* distribution \(f_{\theta_i}(t) \) (*information state*).
- For an active arm, \(f_{\theta_i}(t+1) \) is updated from \(f_{\theta_i}(t) \) and the new observation.
- For a passive arm, \(f_{\theta_i}(t+1) = f_{\theta_i}(t) \).
Bandit and MDP

Multi-Armed Bandit as A Class of MDP: (Bellman’56)

- N independent arms with fully observable states $[Z_1(t), \cdots, Z_N(t)]$.
- One arm is activated at each time.
- Active arm changes state (known Markov process); offers reward $R_i(Z_i(t))$.
- Passive arms are frozen and generate no reward.

Solving Multi-Armed Bandit using Dynamic Programming:

- Exponential complexity with respect to N.
The Slow Propagation of the Breaking News

“A colleague of high repute asked an equally well-known colleague:

— ‘What would you say if you were told that the multi-armed bandit problem had been solved?’

— ‘Sir, the multi-armed bandit problem is not of such a nature that it can be solved.’

— P. Whittle (1989)
Gittins’s Index

The Index Structure of the Optimal Policy: (Gittins: 1960’s)

- Assign each state of each arm a priority index.
- Activate the arm with highest current index value.

Complexity:

- Arm are strongly decomposable (1 N-dim to N 1-dim problems).
- Linear complexity with N.
- Polynomial (cubic) with the state space size of an individual arm (Varaiya & Walrand & Buyukkoc ‘85, Katta & Sethuraman ’04).

Extensions: (Varaiya & Walrand & Buyukkoc ’85)

- From Markovian to non-Markovian dynamics.
Restless Bandit

Restless Multi-Armed Bandit: (Whittle’88)

- Activate K arms simultaneously.
- Passive arms also change state and offer reward.

Structure of the Optimal Policy:

- Not yet found.

Complexity:

- PSPACE-hard (Papadimitriou&Tsitsiklis’99).
Whittle's Index

Whittle’s Index: (Whittle’88)

- Provide a subsidy m for passivity whenever the arm is made passive.
- Whittle’s index: the subsidy m that makes active and passive actions equally attractive at the current state.
Whittle’s Index

Whittle’s Index: *(Whittle’88)*

- Provide a subsidy m for passivity whenever the arm is made passive.
- Whittle’s index: the subsidy m that makes active and passive actions equally attractive at the current state.

Performance:

- Optimal under relaxed constraint on the average number of active arms.
- Asymptotically optimal under certain conditions *(Weber&Weiss’90)*.
- Near optimal performance observed from extensive numerical examples.
Whittle’s Index

Whittle’s Index: (Whittle’88)

- Provide a subsidy m for passivity whenever the arm is made passive.
- Whittle’s index: the subsidy m that makes active and passive actions equally attractive at the current state.

Performance:

- Optimal under relaxed constraint on the average number of active arms.
- Asymptotically optimal under certain conditions *(Weber&Weiss’90)*.
- Near optimal performance observed from extensive numerical examples.

Difficulties:

- Existence (indexability) not guaranteed and difficult to check.
- Numerical index computation infeasible for uncountable state space.
- Optimality in finite regime difficult to establish.
Main Results
Multichannel Dynamic Access

- Each channel is considered as an arm.
- State of arm i: posterior probability that channel i is idle.
 \[
 \omega_i(t) = \Pr[\text{channel } i \text{ is idle in slot } t \mid \text{observations } O(1), \ldots, O(t - 1)]
 \]
- The expected immediate reward for activating arm i is $\omega_i(t)$
Markovian State Transition

If channel i is activated in slot t:

$$\omega_i(t+1) = \begin{cases} p_{11}, & \text{if } O_i(t) = 1 \\ p_{01}, & \text{if } O_i(t) = 0 \end{cases}$$

If channel i is made passive in slot t:

$$\omega_i(t+1) = \omega_i(t)p_{11} + (1 - \omega_i(t))p_{01}.$$
Indexability

A Single-Armed Bandit with Subsidy:

- Being active at state ω: reward $= \omega$.
- Being passive at any state: reward $= m$.

Indexability:

- $\mathcal{P}(m)$: the passive set under subsidy m.
- Indexability: $\mathcal{P}(m)$ increases monotonically as m increases from $-\infty$ to ∞.

Indexable

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{indexable}
\caption{Indexable set $\mathcal{P}(m)$ with subsidy m.}
\end{figure}

Not Indexable

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{not_indexable}
\caption{Not indexable set $\mathcal{P}(m)$ with subsidy m.}
\end{figure}
Proof for Indexability: Value Functions

A Single-Armed Bandit with Subsidy:

- Being active at state ω: reward $= \omega$.
- Being passive at any state: reward $= m$.

Value Functions:

- $V_m(\omega)$: max total discounted reward starting from state ω

 $$V_m(\omega) = \max\{V_m(\omega; \text{active}), \ V_m(\omega; \text{passive})\}$$

- $V_m(\omega; \text{active})$: max total discounted reward if active at ω

 $$V_m(\omega; \text{active}) = \omega + \beta(\omega V_m(p_{11}) + (1 - \omega)V_m(p_{01})) \quad (\text{linear in } \omega)$$

- $V_m(\omega; \text{passive})$: max total discounted reward if passive at ω

 $$V_m(\omega; \text{passive}) = m + \beta V_m(\underbrace{\omega p_{11} + (1 - \omega)p_{01}}_{\text{updated state}}) \quad (\text{convex in } \omega)$$
A threshold policy is optimal for the single-armed bandit with subsidy.

It thus suffices to prove the threshold $\omega^*(m)$ with the subsidy m.
Proof for Indexability: Total Passive Time

- A sufficient condition for $\omega^*(m) \nearrow$ with m:

$$\frac{d(V_m(\omega; \text{passive}))}{d_m}|_{\omega=\omega^*(m)} \geq \frac{d(V_m(\omega; \text{active}))}{d_m}|_{\omega=\omega^*(m)} \quad (\diamond)$$

- \diamond is shown based on
 - $\frac{d(V_m(\omega))}{d_m} = \mathbb{E}[\text{total passive time}].$
 - properties of the first crossing time:

Positive Correlation:

Negative Correlation:
Structure of Whittle’s Index Policy

The Semi-Universal Structure of Whittle’s Index Policy:

- No need to compute the index.
- No need to know \(\{p_{01}, p_{11}\} \) other than their order.

\[p_{11} \geq p_{01} \text{ (positive correlation):} \]

\[p_{11} < p_{01} \text{ (negative correlation):} \]
Structure of Whittle’s Index Policy: Positive Correlation

- Stay with good \((G) \) channels and leave bad \((B) \) ones to the end of the queue.

\[K = 3 \]

\[t = 1 \]
Structure of Whittle's Index Policy: Negative Correlation

- Stay with bad (B) channels and leave good (G) ones to the end of the queue.
- *Reverse* the order of unobserved channels.

<table>
<thead>
<tr>
<th>$t = 1$</th>
<th>$t = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(G)</td>
<td>2</td>
</tr>
<tr>
<td>2(B)</td>
<td>N</td>
</tr>
<tr>
<td>3(G)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

$K = 3$
Robustness of Whittle's Index Policy

- Automatically tracks model variations:

\[p_{11} = 0.6, p_{01} = 0.1 \ (T \leq 5); \ p_{11} = 0.9, p_{01} = 0.4 \ (T > 5) \]
Optimality of Whittle’s Index Policy

Optimality for positively correlated channels:
- holds for general N and K.
- holds for both finite and infinite horizon (discounted/average reward).

Optimality for negatively correlated channels:
- holds for all N with $K = N - 1$.
- holds for $N = 2, 3$.
Performance of Whittle’s Index Policy w.r.t. K

Constant approximation factor $\eta = \frac{\text{Performance of Whittle’s index policy}}{\text{Optimal performance}}$

$p_{11} < p_{01}$ (Negative Correlation)

\[
\begin{align*}
\eta &= 1, & K &= N - 1, N \\
\eta &\geq \max\left\{\frac{1}{2}, \frac{K}{N}\right\}, & \text{otherwise}
\end{align*}
\]
Performance of Whittle’s Index Policy w.r.t. N

- $V(N)$: the average reward achieved by Whittle’s index policy ($K = 1$).
- For $p_{11} \geq p_{01}$, $V(N)$ converges to a constant $\frac{\omega_0}{1 - p_{11} + \omega_0}$ at geometric rate $p_{11} - p_{01}$.
- For $p_{11} < p_{01}$, $V(N)$ approaches a constant $\frac{p_{10}^{(2)}}{E - p_{01}G}$ at geometric rate $(p_{11} - p_{01})^2$.

![Graph showing upper and lower bounds of throughput limit with $p_{11} = 0.8$, $p_{01} = 0.1$]
Inhomogeneous Channels

Whittle’s Index in Closed Form:

- **Positive correlation** \((p_{11} \geq p_{01})**:

\[
I(\omega) = \begin{cases}
\omega, & \omega \leq p_{01} \quad \text{or} \quad \omega \geq p_{11} \\
\frac{\omega}{1-p_{11}+\omega}, & \omega_o \leq \omega < p_{11} \\
\frac{(\omega-T^1(\omega))(L+2)+T^{L+1}(p_{01})}{1-p_{11}+(\omega-T^1(\omega))(L+1)+T^{L+1}(p_{01})}, & p_{01} < \omega < \omega_o
\end{cases}
\]

- **Negative correlation** \((p_{11} < p_{01})**:

\[
I(\omega) = \begin{cases}
\omega, & \omega \leq p_{11} \quad \text{or} \quad \omega \geq p_{01} \\
\frac{p_{01}}{1+p_{01}-\omega}, & T^1(p_{11}) \leq \omega < p_{01} \\
\frac{p_{01}}{1+p_{01}-T^1(p_{11})}, & \omega_o \leq \omega < T^1(p_{11}) \\
\frac{\omega+p_{01}-T^1(\omega)}{1+p_{01}-T^1(p_{11})+T^1(\omega)-\omega}, & p_{11} < \omega < \omega_o
\end{cases}
\]
Solving for Whittle’s Index in Closed-Form

► Whittle’s index $I(\omega)$:

$$I(\omega) = \{ m : V_m(\omega; \text{active}) = V_m(\omega; \text{passive}) \}$$

► Need to obtain $V_m(\omega; \text{active})$ and $V_m(\omega; \text{passive})$ in closed-form

$$V_m(\omega; \text{active}) = \omega + \beta(\omega V_m(p_{11}) + (1 - \omega)V_m(p_{01}))$$

$$V_m(\omega; \text{passive}) = m + \beta V_m(\omega p_{11} + (1 - \omega)p_{01})$$

► $V_m(\omega; \text{active})$ and $V_m(\omega; \text{passive})$ can be written as functions of $\{V_m(p_{11}), V_m(p_{01})\}$ based on the threshold optimal policy and properties of the first crossing time.

► $\{V_m(p_{11}), V_m(p_{01})\}$ can be obtained in closed-form.
Properties of Whittle’s Index

Positive correlation ($p_{11} \geq p_{01}$):

Negative correlation ($p_{11} < p_{01}$):

Monotonicity \Rightarrow equivalence with myopic policy \Rightarrow structure and optimality.
Performance for Inhomogeneous Channels

- The tightness of the performance upper bound ($O(N(\log N)^2)$ running time).
- The near-optimal performance of Whittle's index policy

![Graph showing the relationship between K and the discounted total reward. The graph illustrates the performance of Whittle's index policy compared to the upper bound of the optimal policy.](image-url)
Conclusion and Acknowledgement
Conclusion and Acknowledgement

- Indexability and Whittle’s index in closed-form: *K.Liu&Q.Zhao:08.*
- The semi-universal structure of Whittle’s index policy:
 - Equivalence to the myopic policy: *K.Liu&Q.Zhao:08.*
 - Structure of the myopic policy: *Q.Zhao&B.Krishnamachari:07.*
- The optimality of Whittle’s index policy:
 - Equivalence to the myopic policy: *K.Liu&Q.Zhao:08.*
 - Optimality of the myopic policy for $N = 2$: *Q.Zhao&B.Krishnamachari:07.*
 - Optimality of the myopic policy for $N > 2$:
- The performance of Whittle’s index policy for non-identical arms:
 - Scaling behavior w.r.t. N: *K.Liu&Q.Zhao:08.*
 - $O(N(\log N)^2)$-time algorithm for computing an upper bound: *K.Liu&Q.Zhao:08.*