Quickest Change Detection in Multiple On-Off Processes

Qing Zhao, Jia Ye

Department of Electrical and Computer Engineering
University of California, Davis, CA 95616

Supported by NSF and ARL-CTA.
Quickest Change Detection

Change Point T_0 \hspace{2cm} Declare at T_d

Detection Delay

t

$X_1 \quad X_2 \quad \cdots \quad X_{T_0-1} \quad X_{T_0} \quad X_{T_0+1} \quad \cdots \quad X_{T_d} \quad \cdots$

i.i.d. $\sim f_0(x)$ \hspace{2cm} i.i.d. $\sim f_1(x)$

Quickest Detection: min $\mathbb{E}[(T_d - T_0)^+]$ subject to $\Pr[T_d < T_0] \leq \zeta$

Tradeoff: Detection delay vs. detection reliability.
Quickest Change Detection

Change Point T_0
Declare at T_d

Detection Delay

$X_1 \quad X_2 \quad \cdots \quad X_{T_0-1} \quad X_{T_0} \quad X_{T_0+1} \quad \cdots \quad X_{T_d} \quad \cdots$

i.i.d. $\sim f_0(x)$
i.i.d. $\sim f_1(x)$

Quickest Detection: $\min \mathbb{E}[\{T_d - T_0\}^+]$ subject to $\Pr[T_d < T_0] \leq \zeta$

- Bayesian: Shiryaev’61, Borovkov’98, Tartakovsky & Veeravalli’05.
Application in Cognitive Radio

- **Measurements:** \(\{X_1, X_2, \ldots, X_{T_0-1}\} \) are i.i.d with distribution \(f_0(x) \);
 \(\{X_{T_0}, X_{T_0+1}, \ldots\} \) are i.i.d with distribution \(f_1(x) \).

- **Stopping Time:** At time \(t = T_d \), the user declares an opportunity.

- **Quickest Detection:** \(\min \frac{\mathbb{E}(T_d - T_0)}{+} \) subject to \(\frac{\Pr[T_d < T_0]}{\leq \zeta} \)

Detection Delay

Interference Constraint
Quickest Detection in Multiple On-Off Processes

- Two Fundamental Differences:
 - Channel occupancy is an on-off process with multiple change points.
 - There are multiple channels available.
Quickest Detection of Idle Periods in Multiple On-Off Processes:

- Continue, switch, or declare?

Tradeoffs:

- Whether to declare: delay vs. reliability.
- Whether to switch: loss of data vs. avoiding bad realizations.
Outline

- Quickest change detection in a single stochastic process
 - Shiryaev’s algorithm

- Quickest detection in multiple on-off processes
 - A decision-theoretic formulation
 - The optimal detection rule: a threshold policy

- Simulation examples

- Conclusion and work in progress
Quickest Change Detection: Classic Bayesian Formulation

Bayesian Formulation:

- Prior distribution of change point T_0: geometric

\[
\Pr[T_0 = 0] = \lambda_0 \\
\Pr[T_0 = k] = (1 - \lambda_0)p(1 - p)^{k-1}, \forall k > 0,
\]
Shiryaev’s Algorithm

A sufficient statistic: \textbf{a posterior probability} that change has occurred
\[\lambda_t \triangleq \Pr[T_0 \leq t | X_1, X_2, \ldots, X_t]. \]

Shiryaev’s detection rule:
\[T_d = \inf\{t : \lambda_t \geq \eta_d\} \]

Detection threshold \(\eta_d \): determined by the reliability constraint \(\zeta \).

Setting \(\eta_d = 1 - \zeta \) is asymptotically optimal as \(\zeta \to 0 \).
A large number of independent homogeneous on-off processes.

- **Busy period**: geometrically distributed with mean $m_B = \frac{1}{p_B}$.
- **Idle period**: geometrically distributed with mean $m_I = \frac{1}{p_I}$.
- **Fraction of idle time**: $\lambda_0 = \frac{m_I}{m_I + m_B}$.
Quickest Detection In Multiple On-Off Processes

\[\min \mathbb{E}[\sum_{l=1}^{L-1} T_s(l) + T_d(L)] \quad s.t. \quad \Pr[Z_L(\sum_{l=1}^{L-1} T_s(l) + T_d(L)) = \text{busy}] \leq \zeta \]

Detection Time

Reliability Constraint
A POMDP Formulation

► **State Space:** 0 (busy), 1 (idle), \(\triangle \) (absorbing state)

► **Action Space:** S (Switch), C (Continue), D (Declare)

► **State Transition:**

- Transition diagram: [Diagram showing state transitions]

► **Cost:**

- Switch or Continue: 1
- Declare during a busy period: \(\gamma \)
A POMDP Formulation

- **A Sufficient Statistic**: the information state (belief)

 \[\lambda_t = \Pr[Z_t = \text{idle}|X_1, X_2, \ldots, X_t] \]

 \[\lambda_0 = \frac{m_I}{m_I + m_B} \]

- **Update of the Information State**

 \[\lambda_t = \begin{cases}
 T(\lambda_0 | x) & a(t-1) = S, \ X_t = x \\
 T(\lambda_{t-1} | x) & a(t-1) = C, \ X_t = x
 \end{cases} \]

- **\(T(\lambda | x) \)**: updated information state based on the new measurement \(x \).

 \[T(\lambda | x) \triangleq \frac{(\lambda \tilde{p}_I + \lambda \tilde{p}_B) f_1(x)}{(\lambda \tilde{p}_I + \lambda \tilde{p}_B) f_1(x) + (\lambda p_I + \lambda \tilde{p}_B) f_0(x)}. \]
A POMDP Formulation

- Channel switching and change detection policy π:

\[\lambda_t \in [0, 1] \implies a(t) \in \{S, C, D\}, \text{ for each time } t. \]

- Quickest change detection:

\[\pi^* = \arg \min_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} R_{\pi}(\lambda_t) \mid \lambda_0 = \frac{m_I}{m_B + m_I} \right], \]

where λ_t represents the channel state at time t. The minimization is performed over all possible policies π, and the expected reward $R_{\pi}(\lambda_t)$ is calculated for each policy. The optimal policy π^* is the one that minimizes the expected cumulative reward, given the initial state λ_0. This formulation is particularly useful in scenarios where the system needs to adapt quickly to changes in the environment while minimizing the cost associated with switching channels or detecting changes.
Quickest Change Detection: Value Functions

- **$V(\lambda_t)$**: the minimum expected total cost-to-go when the current belief is λ_t.

 $V(\lambda_t) = \min\{V_C(\lambda_t), V_S(\lambda_t), V_D(\lambda_t)\}$.

 Continue **Switch** **Declare**

- **$V_C(\lambda_t)$**: the minimum expected total cost-to-go if continue at t.

 $V_C(\lambda_t) = 1 + \int_x P(x; \lambda_t) V(T(\lambda_t|x)) dx$

 Pr[observe x under λ_t]

- **$V_S(\lambda_t)$**: the minimum expected total cost-to-go if switch at t.

 $V_S(\lambda_t) = 1 + \int_x P(x; \lambda_0) V(T(\lambda_0|x)) dx = V_C(\lambda_0)$

 Pr[observe x under λ_0]

- **$V_D(\lambda_t)$**: the minimum expected total cost-to-go if declare at t.

 $V_D(\lambda_t) = (1 - \lambda_t)\gamma$.

© Qing Zhao, Jia Ye. ICASSP, 2009.
Quickest Change Detection: A Threshold Policy

- $V_D(\lambda_t)$ is linear.
- $V_C(\lambda_t)$ is monotonically decreasing (if $\frac{1}{m_B} + \frac{1}{m_I} \leq 1$) and concave.
- $V_S(\lambda_t) = V_C(\lambda_0)$, where $\lambda_0 = \frac{m_I}{m_I + m_B}$.

![Graph showing $V_D(\lambda_t)$, $V_C(\lambda_t)$, and $V_S(\lambda_t)$ with threshold λ_0.]
Quickest Change Detection: A Threshold Policy

\[V(\lambda_t) = \min \{ V_S(\lambda_t), V_C(\lambda_t), V_D(\lambda_t) \}. \]

Switch \quad Continue \quad Declare
Simulation Examples

- $f_0(x), f_1(x)$: Gaussian with zero mean and different variances.

- $SNR = 10dB$.

- $\eta_d = 1 - \zeta$.

Simulation Example: Geometric Distribution

- Increase both m_B and m_I while keeping λ_0 fixed
Simulation Example: Arbitrary Distributions

- Busy period: Pareto distribution with increasing tail index
Conclusion and Work in Progress

Quickest Detection in Multiple On-Off Processes:

Work in Progress:

- Asymptotic optimality for arbitrary distributions and non-i.i.d. data.
- Minimax formulation.