Efficient Algorithms for Resource Allocation in Heterogeneous OFDMA Networks

Shafi Bashar, Zhi Ding

Department of Electrical and Computer Engineering
University of California, Davis

Dec. 03, 2008
Resource Allocation in Multiuser OFDMA

Downlink OFDMA Assumptions:

- M Users
- K Subcarriers
- CSIT
- Discrete Adaptive Modulation Scheme

Resource Allocation in Heterogeneous OFDMA Networks

Shafi Bashar, Zhi Ding, Dept. of ECE, UCDavis
Resource Allocation in Multiuser OFDMA

Downlink OFDMA Assumptions:

- M Users
- K Subcarriers
- CSIT
- Discrete Adaptive Modulation Scheme

Resource Allocation: Subcarriers, Power and Bit-loading
Heterogeneous Network Users

Heterogeneity: Based on QoS requirement

- **Best-Effort (BE) Users**
 - Traditional internet users w/o QoS requirement.
 - Traffic demand → elastic, Data requirement → not fixed.
 - Can utilize even the minimum amount of bandwidth provided to them.

- **High-Priority (HP) Users**
 - Demand a level of QoS
 - Traffic demand → inelastic
 - QoS Metric → Bandwidth(Data Rate), BER etc.
Heterogeneity: Based on QoS requirement

- Best-Effort (BE) Users
 - Traditional internet users w/o QoS requirement.
 - Traffic demand → elastic, Data requirement → not fixed.
 - Can utilize even the minimum amount of bandwidth provided to them.

- High-Priority (HP) Users
 - Demand a level of QoS
 - Traffic demand → inelastic
 - QoS Metric → Bandwidth(Data Rate), BER etc.
Heterogeneous Network Users

Heterogeneity: Based on QoS requirement

- Best-Effort (BE) Users
 - Traditional internet users \(w/o\) QoS requirement.
 - Traffic demand \(\rightarrow\) elastic, Data requirement \(\rightarrow\) not fixed.
 - Can utilize even the minimum amount of bandwidth provided to them.

- High-Priority (HP) Users
 - Demand a level of QoS
 - Traffic demand \(\rightarrow\) inelastic
 - QoS Metric \(\rightarrow\) Bandwidth(Data Rate), BER etc.
Assumes either BE user network or HP user network

- Rate Adaptive (RA) Scheme
 - [Rhee, Cioffi 00], [Inhyoyoung, Lee et.al. 01], [Zukang, Andrews 05], [Song, Li 05]-I,II etc.
 - Allocate resources among BE users in a fair manner.

- Margin Adaptive (MA) Scheme
 - [Cheong, Cheng, Lataief, Murch 99], [Pietrzyk, Janssen et.al. 02], [Ergen, Coleri, Varaiya 03], [Svedman, Wilson, Cimini, Ottersten 07] etc.
 - QoS aware resource allocation among HP users.
Existing Works

Assumes either BE user network or HP user network

► Rate Adaptive (RA) Scheme
 ► [Rhee, Cioffi 00], [Inhyo Young, Lee et.al. 01], [Zukang, Andrews 05], [Song, Li 05]-I,II etc.
 ► Allocate resources among BE users in a fair manner.

► Margin Adaptive (MA) Scheme
 ► [Cheong, Cheng, Lataief, Murch 99], [Pietrzyk, Janssen et.al. 02],
 [Ergen, Coleri, Varaiya 03], [Svedman, Wilson, Cimini, Ottersten 07] etc.
 ► QoS aware resource allocation among HP users.
Resource allocation framework for heterogeneous network

Observation:

- **Figure:** (a) HP Utility Function (b) BE Utility Function

- **Nature of users**
 - HP users with **hard** QoS requirement
 - BE users with flexible rate requirement

 are inherently different.

- **Should not use same type of utility function to represent both.**
Resource allocation framework for heterogeneous network

Observation:

![Utility vs. Data Rate Graphs]

Figure: (a) HP Utility Function (b) BE Utility Function

- **Nature of users**
 - HP users with **hard** QoS requirement
 - BE users with flexible rate requirement

 are inherently different.

- Should not use same type of **utility function** to represent both.

Need: A new framework for heterogeneous network scenario.
Resource allocation framework for heterogeneous network

Assumptions:

- Priority: HP users first, then BE users
- Pricing: HP users will pay more

Two Step Approach for Heterogeneous Network:

- Satisfy QoS requirement of HP users (as many as possible)
 - Admission Control
 - Resource Allocation
- Remaining resources: Distribute among BE users fairly.
Resource allocation framework for heterogeneous network

Assumptions:

- Priority: HP users first, then BE users
- Pricing: HP users will pay more

Two Step Approach for Heterogeneous Network:

- Satisfy QoS requirement of HP users (as many as possible)
 - Admission Control
 - Resource Allocation
- Remaining resources: Distribute among BE users fairly.
Resource allocation framework for heterogeneous network

Assumptions:
- Priority: HP users first, then BE users
- Pricing: HP users will pay more

Two Step Approach for Heterogeneous Network:
- Satisfy QoS requirement of HP users (as many as possible)
 - Admission Control
 - Resource Allocation
- Remaining resources: Distribute among BE users fairly.
Clustering: Grouping of adjacent subcarriers.

Figure: (a) Subcarrier Allocation (b) Cluster Allocation
Clustering: Why?

- Adjacent subcarriers are correlated → similar SNR values.
- Reduction in feedback information.
- Reduction in the number of variables in allocation algorithms.
- Practical; Consistent with 802.16e (e.g., 2048 subcarriers divided into 32 subchannels).
Cluster Allocation Subproblem (CASP)

\[
\begin{align*}
\text{maximize} & \quad \sum_{i \in \{\text{BE Users}\}} V_{BE}(R_i) \\
\text{subject to:} & \\
\quad & R_i \geq Q_i, \quad i \in \{\text{HP Users}\} \\
\quad & R_i = \sum_{l=1}^{L} c_{i,l} z_{i,l}, \quad i \in \{\text{Users}\}, \quad l \in \{\text{Clusters}\} \\
\quad & \sum_{i=1}^{M} z_{i,l} = 1, \quad z_{i,l} \in [0,1]
\end{align*}
\]

- \(V_{BE}(\cdot)\) BE user utility function
- \(Q_i\) QoS demand of \(i\)-th HP user
- \(c_{i,l}\) Capacity of \(l\)-th cluster on user-\(i\)

Shafi Bashar, Zhi Ding, Dept. of ECE, UCDavis

Resource Allocation in Heterogeneous OFDMA Networks
Utility Function

Utility Function: User Satisfaction with supplied Data Rate.

- maximize $\sum_{i \in \text{BE Users}} V_{BE}(R_i) \iff$ Fair resource allocation
- BE user psychology: User satisfaction \uparrow with supplied rate, reaches saturation.
- Traditional approach: log utility function.
- Piecewise linear function can also be used.
Solution of CASP using Linear Programming (LP)

- Piecewise linear utility function: Converts CASP into LP

![Graph showing the conversion of CASP to LP using piecewise linear utility function](image)
CASP Algorithm II : Partial Dual Decomposition Method

- **Objective**:
 - Break a bigger problem into smaller subproblem → achieve scalability.
 - Solve each smaller subproblem in parallel/sequential manner.

- **Used in Network Utility Maximization** problem [Kelly 97], [Chinag, Low, Calderbank, Doyle 07], [Palomar 07] etc.

- **Take a partial Lagrangian wrt. the complicating constraint** \(\sum_{i=1}^{M} z_{i,l} \) as

\[
\mathcal{L}(R_i, z_{i,l}, v_l) = \sum_{i \in \mathcal{B}} \left[-V_{BE}(R_i) + \sum_{l=1}^{L} v_l z_{i,l} \right] + \sum_{i \in \mathcal{H}} \left[\sum_{l=1}^{L} v_l z_{i,l} \right] - \sum_{l=1}^{L} v_l
\]

- **Partial dual function**: \(\inf_{R_i,z_{i,l}} \mathcal{L}(R_i, z_{i,l}, v_l) \) is

\[
g(v_l) = \sum_{i \in \mathcal{B}} \left[\inf_{R_i,z_{i,l}} \left\{ -V_{BE}(R_i) + \sum_{l=1}^{L} v_l z_{i,l} \right\} \right] + \sum_{i \in \mathcal{H}} \left[\inf_{z_{i,l}} \left\{ \sum_{l=1}^{L} v_l z_{i,l} \right\} \right] - \sum_{l=1}^{L} v_l
\]
CASP Algorithm II: Partial Dual Decomposition Method

BE User Subproblem: \(i \in \{\text{BE Users}\} \)

\[
\begin{align*}
\text{minimize} & \quad - V_{\text{BE}}(R_i) + \sum_{l=1}^{L} v_l z_{i,l} \\
\text{subject to:} & \\
R_i &= \sum_{l=1}^{L} c_i[l] z_{i,l} \\
z_{i,l} &\in [0, 1] \quad l = 1, \ldots, L
\end{align*}
\]

HP User Subproblem: \(i \in \{\text{HP Users}\} \)

\[
\begin{align*}
\{\tilde{z}_{i,l}\} &\triangleq \arg\min_{z_{i,l}} \sum_{l=1}^{L} v_l z_{i,l} \\
\text{subject to:} & \\
\sum_{l=1}^{L} c_i[l] z_{i,l} &\geq R_i \\
z_{i,l} &\in [0, 1] \quad l = 1, \ldots, L
\end{align*}
\]
CASP Algorithm II : Partial Dual Decomposition Method

BE User Subproblem : \(i \in \{ \text{BE Users} \} \)

\[
\begin{align*}
\text{minimize} \quad & -V_{BE}(R_i) + \sum_{l=1}^{L} v_l \, z_{i,l} \\
\text{subject to:} \quad & R_i = \sum_{l=1}^{L} c_{i[l]} \, z_{i,l} \\
& z_{i,l} \in [0, 1] \quad l = 1, \ldots, L
\end{align*}
\]

HP User Subproblem : \(i \in \{ \text{HP Users} \} \)

\[
\begin{align*}
\{\bar{z}_{i,l}\} = \arg \min_{z_{i,l}} \sum_{l=1}^{L} v_l \, z_{i,l} \\
\text{subject to:} \quad & \sum_{l=1}^{L} c_{i[l]} \, z_{i,l} \geq R_i \\
& z_{i,l} \in [0, 1] \quad l = 1, \ldots, L
\end{align*}
\]

Dual Problem :

\[
\begin{align*}
\text{maximize} \quad & g(v_l) \\
= \quad & \text{maximize} \left[\sum_{i \in B} \left\{ -V_{BE}(\bar{R}_i) + \sum_{l=1}^{L} v_l \, \bar{z}_{i,l} \right\} + \sum_{i \in H} \left\{ \sum_{l=1}^{L} v_l \, \bar{z}_{i,l} \right\} - \sum_{l=1}^{L} v_l \right]
\end{align*}
\]
Partial Dual Decomposition

- Solution of the Dual Problem: Subgradient Method
- Iteration Update: $v_l(t+1) = v_l(t) + \alpha(t) \left(\sum_{i=1}^{M} \tilde{z}_{i, l} - 1 \right)$ for $l = 1, \ldots, L$

Diagram:

1. Initialize / Update Dual Variables
2. BE User Subproblem
3. HP User Subproblem
4. Projection of Variables
5. Duality Gap $< \varepsilon$
6. Optimal Solution
Power Allocation Subproblem (PASP)

\[
\text{maximize} \quad \sum_{i \in B} V_{BE}(R_i)
\]

subject to:

- HP constraints set: \ldots
- BE constraints set: \ldots
- Total Power constraint: \[
\left[\sum_{i \in H} \sum_{k=1}^{K} p_{i,k} x_{i,k} \right] + \left[\sum_{i \in B} \sum_{k=1}^{K} p_{i,k} x_{i,k} \right] \leq P_{total}
\]
Power Allocation Subproblem (PASP)

\[
\begin{align*}
\text{maximize} & \quad \sum_{i \in B} V_{BE}(R_i) \\
\text{subject to:} & \\
\text{HP constraints set:} & \cdots \\
\text{BE constraints set:} & \cdots \\
\text{Total Power constraint:} &
\left[\sum_{i \in H} \sum_{k=1}^{K} p_{i,k} x_{i,k} \right] +
\left[\sum_{i \in B} \sum_{k=1}^{K} p_{i,k} x_{i,k} \right] \leq P_{total}
\end{align*}
\]

HP PASP:

\[
\begin{align*}
\text{minimize} & \quad t_{HP} \\
\text{subject to:} & \\
\text{HP Constraints set:} & \cdots \\
\sum_{i \in H} \sum_{k=1}^{K} p_{i,k} x_{i,k} & \leq t_{HP} \\
t_{HP} & \leq P_{total}
\end{align*}
\]

BE PASP:

\[
\begin{align*}
\text{maximize} & \quad \sum_{i \in B} V_{BE}(R_i) \\
\text{subject to:} & \\
\text{BE constraints set:} & \cdots \\
\sum_{i \in B} \sum_{k=1}^{K} p_{i,k} x_{i,k} & \leq P_{total} - t_{HP}
\end{align*}
\]
Power Allocation Subproblem (PASP) : Intuition

- **HP PASP**: Use minimum power to satisfy the QoS demand of all HP users.
- **BE PASP**: Allocate remaining powers among BE users to maximize total utility.
Power Allocation Subproblem (PASP) : Algorithm

HP PASP: Use modified successive bit allocation algorithm to determine $p_{i_{\text{min}}}$ for all HP users.

BE PASP: Already solved in literature [Song, Li 05] - II etc.

Successive Bit Allocation Algorithm:

- Assign bits and corresponding power successively.
- At each assignment, subcarrier that requires least additional power to employ next higher modulation level is selected.
- **Modified stopping criteria:** assignment ends when QoS requirement is fulfilled.
Success Rate: % of total HP users’ QoS satisfied
Average utility of BE users

10 users, 512 subcarrier OFDMA: Success Rate

![Graph showing the success rate (%) vs. SNR (dB) for different admission control methods.]

- **CASP-II** (heuristic admission control)
- **CASP-I** (heuristic admission control)
- **CASP-I** (exhaustive admission control)
- **PASP**

Shafi Bashar, Zhi Ding, Dept. of ECE, UC Davis

Resource Allocation in Heterogeneous OFDMA Networks
10 users, 512 subcarrier OFDMA : Average Utility

![Graph showing Average BE User Utility vs SNR (dB) for different allocation subproblems.

- CASP − II (heuristic admission control)
- CASP − I (heuristic admission control)
- CASP − I (exhaustive admission control)
- PASP

Success Rate : % of total HP users’ QoS satisfied
Average utility of BE users

Shafi Bashar, Zhi Ding, Dept. of ECE, UCDavis
Resource Allocation in Heterogeneous OFDMA Networks
Clustering Effect on a 512 subcarrier OFDMA Network Performance

Shafi Bashar, Zhi Ding, Dept. of ECE, UCDavis

Resource Allocation in Heterogeneous OFDMA Networks
Joint Admission Control and Resource Allocation

Admission Control: Controls HP user admission into the network.

- Traditionally, considered separately from resource allocation.
- Admission control depends on
 - Available network resource
 - User channel condition
- Heterogeneous Network: Joint Admission Control and Resource Allocation

PASP admission control: two step approach

- Determine $p_{i\text{min}}$ for all HP users
- Allocate power to a subset of HP users \mathcal{N} such that $|\mathcal{N}|$ is maximized and $\sum_{i \in \mathcal{N}} p_{i\text{min}} \leq P_{\text{total}}$
Joint Admission Control and Resource Allocation

Admission Control: Controls HP user admission into the network.

- Traditionally, considered separately from resource allocation.
- Admission control depends on
 - Available network resource
 - User channel condition
- Heterogeneous Network: Joint Admission Control and Resource Allocation

PASP admission control: two step approach

- Determine $p_{i_{\min}}$ for all HP users
- Allocate power to a subset of HP users \mathcal{N} such that $|\mathcal{N}|$ is maximized and $\sum_{i \in \mathcal{N}} p_{i_{\min}} \leq P_{\text{total}}$
Admission Control in CASP

Removal of min cardinality IIS (Irreducible Infeasible Set) set cover from the QoS constraints set.

▶ NP-hard problem
▶ Elastic variables e_i in LP
▶ Minimize $\sum_{i \in \mathcal{H}} e_i$

Resource Allocation in Heterogeneous OFDMA Networks
Admission Control : Simulation Result

Figure: Joint Admission Control and Resource Allocation.
Conclusion

- A new framework: heterogeneous network
 - Clustering based LP
 - Dual Decomposition

- Joint admission control and resource allocation.
 - Elastic LP
Thank You