
G. M. Amdahl

G. A. Blaauw

F. P. Brooks, Jr.,

Architecture of the IBM System / 360

Abstract: The architecture* of the newly announced IBM System/360 features four innovations:

1. An approach to storage which permits and exploits very large capacities, hierarchies of speeds, read-

only storage for microprogram control, flexible storage protection, and simple program relocation.

2. An input/output system offering new degrees of concurrent operation, compatible channel operation,

data rates approaching 5,000,000 characters/second, integrated design of hardware and software, a new
low-cost, multiple-channel package sharing main-frame hardware, new provisions for device status infor-

mation, and a standard channel interface between central processing unit and input/output devices.

3. A truly general-purpose machine organization offering new supervisory facilities, powerful logical pro-
cessing operations, and a wide variety of data formats.

4. Strict upward and downward machine-language compatibility over a line of six models having a per-
formance range factor of 50.

This paper discusses in detail the objectives of the design and the rationale for the main features of the
architecture. Emphasis is given to the problems raised by the need for compatibility among central process-

ing units of various size and by the conflicting demands of commercial, scientific, real-time, and logical in-

formation processing. A tabular summary of the architecture is shown in the Appendices.

Introduction

The design philosophies of the new general-purpose ma-
chine organization for the IBM System/360 are discussed
in this paper.? In addition to showing the architecture*
of the new family of data processing systems, we point out
the various engineering problems encountered in attempts
to make the system design compatible, at the program bit
level, for large and small models. The compatibility was
to extend not only to models of any size but also to their
various applications-scientific, commercial, real-time, and
so on.

The term architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual structure and
functimal behavior, as distinct from the organization of the data flow
and controls, the logical design, and the physical implementation.
i Additional details concerning the architecture, engineering design,

programming, and application of the IBM System/360 will appear in a
series of articles in the IBM Systems Journal.

The section that follows describes the objectives of
the new system design, i.e., that it serve as a base for new
technologies and applications, that it be general-purpose,
efficient, and strictly program compatible in all models.
The remainder of the paper is devoted to the design
problems faced, the alternatives considered, and the deci-
sions made for data format, data and instruction codes,
storage assignments, and input/output controls.

Design objectives

The new architecture builds upon but differs from the de-
signs that have gradually evolved since 1950. The evolution
of the computer had included, besides major technological
improvements, several important systems concepts and
developments : 87

IBM JOURNAL APRIL 1964

88

1. Adaptation to business data processing.

2. Growing importance of the total system, especially the
input/output aspects.

3. Universal use of assembly programs, compilers, and
other metaprograms.

4. Development of magnetic recording on tapes, drums,
and disks.

5. Hundred-fold expansion of storage capacities.

6. Adaptation for real-time systems.

During this period most new computer models, from
the point of view of their logical structure, were improved,
enlarged, or technologically recast versions of the machines
developed in the early 1950’s. IBM products are not
atypical; the evolution has gone from IBM 701 to 7094,
650 to 7074, from 702 to 7080, and from 1401 to 7010.

The system characteristics to be described here, how-
ever, are a new approach to logical structure and function,
designed for the needs of the next decade as a coordinated
set of data processing systems.

Advanced concepts

It was recognized from the start that the design had to
embody recent conceptual advances, and hence, if neces-
sary, be incompatible with existing products. To this end,
the following premises were considered:

1. Since computers develop into families, any proposed
design would have to lend itself to growth and to suacessor
machines.

2. Input/output (I/O) devices make systems specifically
useful for given applications. A general method was needed
for using 1/0 devices differing in data rate, access, and
function.

3. The real value of an information system is properly
measured by answers-per-month, not bits-per-microsecond.
The former criterion required specific advances to increase
throughput for a given internal speed, to shorten turn-
around time for a given throughput, and to make the
whole complex of machines and programming systems
easier to use.

4. The functions of the central processing unit (CPU)
proper are specific to its application only a minor fraction
of the time. The functions required by the system for its
own operation, e.g., compiling, input/output management,
and the addressing of and within complex data structures,
use a major share of time. These functions had to be made
efficient, and need not be different in machines designed
for different applications.

AMDAHL, BLAAUW AND BROOKS

5. The input/output channel and the input/output control
program had to be designed for each other.

6. Machine systems had to be capable of supervising
themselves, without manual intervention, for both real-
time and multiprogrammed, or time-shared, applications.
To realize this capability requires: a comprehensive inter-
ruption system, tamper-proof storage protection, a pro-
tected supervisor program, supervisor-controlled program
switching, supervisor control of all input/output (includ-
ing unit assignment), nonstop operation (no HALT), easy
program relocation, simple writing of read-only or un-
modified programs, a timer, and interpretive consoles.

7. It must be possible and straightforward to assemble
systems with redundant I/O, storages, and CPU’s so that
the system can operate when modules fail.

8. Storage capacities of more than the commonly available
32,000 words would be required.

9. Certain types of problems require floating-point word
length of more than 36 bits.

10. As CPU’s become increasingly reliable, built-in
thorough checking against hardware malfunction is im-
perative for all systems, regardless of application.

11. Since the largest servicing problem is diagnosis of
malfunction, built-in hardware fault-locating aids are
essential to reduce down-times. Furthermore, identifka-
tion of individual malfunctions and of individual invalidi-
ties in program syntax would have to be provided.

Open-ended design

The new design had to provide a dependable base for a
decade of customer planning and customer programming,
and continuing laboratory developments, whether in tech-
nology, application and programming techniques, system
configuration, or special requirements.

The various circuit, storage, and input/output tech-
nologies used in a system change at different times, causing
corresponding changes in their relative speeds and costs.
To take advantage of these changes, it is desirable that the
design permit asynchronous operation of these compo-
nents with respect to each other.

Changing application and programming techniques
would require open-endedness in function. Current trends
had to be extrapolated and their consequences anticipated.
This anticipation could be achieved by direct provision,
e.g., by increasing storage capacities and by using multiple-
CPU systems, various new 1/0 devices, and time shar-
ing. Anticipation might also take the form of general-
ization of function, as in code-independent scan and
translation facilities, or it might consist of judiciously re-
serving spare bits, operation codes, and blocks of operation
codes, for new modes, operations, or sets of operations.

Changing requirements for system configuration would
demand not only such approaches as a standard interface
between 1/0 devices and control unit, but also capabilities
for a machine to directly sense, control, and respond to
other equipment modules via paths outside the normal
data routes. These capabilities permit the construction of
supersystems that can be dynamically reconfigured under
program control, to adapt more precisely to specialized
functions or to give graceful degradation.

In many particular applications, some special (and often
minor) modification enhances the utility of the system.
These modifications (RPQs), which may correct some
shortsightedness of the original design, often embody
operations not fully anticipated. In any event, a good
general design would obviate certain modifications and
accommodate others.

General-purpose function

The machine design would have to provide individual
system configurations for large and small, separate and
mixed applications as found in commercial, scientific, real-
time, data-reduction, communications, language, and logi-
cal data processing. The CPU design would have to be
facile for each of these applications. Special facilities such
as decimal or floating-point arithmetic might be required
only for one or another application class and would be
offered as options, but they would have to be integral,
from the viewpoint of logical structure, with the design.

In particular, the general-purpose objective dictated that:

1. Logical power of great generality would have to be
provided, so that all combinations of bits in data entities
would be allowed and might be manipulated with oper-
ations whose power and utility depend upon the general
nature of representations rather than upon any specific
selection of them.

2. Operations would have to be code-independent except,
of course, where code definition is essential to operation,
as in arithmetic. In particular, all bit combinations should
be acceptable as data; no combination should exert any
control function when it appears in a data stream.

3. The individual bit would have to be separately manip-
ulatable.

4. The general addressing system would have to be able
to refer to small units of bits, preferably the unit used for
characters.

Further, the implications of general-purpose CPU design
for communications-oriented systems indicated a radical
departure from current systems philosophy. The conven-
tional CPU, for example, is augmented by an independent
stored-program unit (such as the IBM 7750 or 7740) to
handle all communications functions. Since the new CPU

would easily perform such logical functions as code trans-
lation and message assembly, communications lines would
be attached directly to the 1/0 channel via a control unit
that would perform only character assembly and the elec-
trical line-handling functions.

Eficient performance

The basic measure of a good design is high performance
in comparison to other designs having the same cost. This
measure cannot be ignored in designing a compatible line.
Hence each individual model and systems configuration
in the line would have to be competitive with systems that
are specialized in function, performance level or both.
That this goal is feasible in spite of handicaps introduced
by the compatibility requirement was due to the especially
important cost savings that would be realized due to
compatibility.

Intermodel compatibility

The design had to yield a range of models with internal
performance varying from approximately that of the IBM
1401 to well beyond that of the IBM 7030 (STRETCH). As
already mentioned, all models would have to be strictly
program compatible, upward and downward, at the pro-
gram bit level.

The phrase “strictly program compatible” requires a
more technically precise definition. Here it means that a
valid program, whose logic will not depend implicitly upon
time of execution and which runs upon configuration A,
will also run on configuration B if the latter includes at
least the required storage, a t least the required 1/0 de-
vices, and at least the required optional features. Invalid
programs, i.e., those which violate the programming
manual, are not constrained to yield the same results on
all models. The manual identifies not only the results of
all dependable operations, but also those results of ex-
ceptional and/or invalid operations that are not depend-
able. Programs dependent on execution-time will operate
compatibly if the dependence is explicit, and, for example,
if completion of an 1 / 0 operation or the timer are tested.

Compatibility would ensure that the user’s expanding
needs be easily accommodated by any model. Compati-
bility would also ensure maximum utility of programming
support prepared by the manufacturer, maximum sharing
of programs generated by the user, ability to use small
systems to back up large ones, and exceptional freedom in
configuring systems for particular applications.

It required a new concept and mode of thought to make
the compatibility objective even conceivable. In the last
few years, many computer architects had realized, usually
implicitly, that logical structure (as seen by the program-
mer) and physical structure (as seen by the engineer) are
quite different. Thus each may see registers, counters, etc.,

ARCHITECTURE OF THE 1

89

[BM SYSTEM/360

that to the other are not at all real entities. This was not
so in the computers of the 1950’s. The explicit recognition
of the duality of structure opened the way for the com-
patibility within System/360. The compatibility require-
ment dictated that the basic architecture had to embrace
different technologies, different storage-circuit speed ratios,
different data path widths, and different data-flow com-
plexities. The basic machine structure and implementation
at the various performance levels are shown in Fig. 1.

The design decisions
Certain decisions for the architectural design became
mileposts, because they (a) established prominent charac-
teristics of the System/360, (b) resolved problems con-
cerning the compatibility objective, thus illuminating the
essential differences between small models and large, or
(c) resolved problems concerning the general-purpose ob-
jective, thus illuminating the essential differences among
applications. The sections that follow discuss these de-

Figure l Machine structure and implementation.

STORAGE

-
CYCLE

PS -
2.0

2.5

2.0

2.0

1.0

1.0 -

I 1 IK=1024
CAPACITY 8-BIT BYTES WIDTH BITS

EXCLUDING PARITY

8 - 6 4 K 8

16 - 256 K 16

32 - 256 K 32

128 - 512 K 64

256 - 512 K 64

256 - 512 K 64

I +

ADDRESSES

70

INSTRUCTIONS
t

4 I
DATA FLOW

EXCLUDING PARITY
WIDTH BITS CIRCUIT DELAY

PER LEVEL, ns

30 a 30

40 8

5

30

50 32 30

60 64 IO

62 64 IO

70 64 I I CONTROL

MODEL TYPE CYCLE

30

40

50

60

62

70

REAO ONLY STORE

REAO ONLY STORE

REAO ONLY STORE

REAO ONLY STORE

REAO ONLY STORE

CONVENTIONAL CIRCUITS

INDEXED ADDRESSES 1.0

0.625

0.5

0.25

GENERAL REGISTERS FLOATING POINT REGISTERS

I MODEL 1 TYPE 1 EXCLUDING PARITY 1 ps 1 WIDTH BITS CYCLE

MAIN STORE

CORE ARRAY

CORE ARRAY

TRANSISTOR REGISTERS

64 -
64 -

90

AMDAHL, BLAAUW AND BROOKS

cisions, the problems faced, the alternatives considered,
and the reasons for the outcome.

Data format

The decision on basic format (which affected character
size, word size, instruction field, number of index registers,
input-output implementation, instruction set layout, stor-
age capacity, character code, etc.) was whether data length
modules should go as 2" or 3.2". Even though many
matters of format were considered in the basic choice,
we will for convenience treat the major components of
the decision as if they were independent.

Character size, 6 us 4/8. In character size, the funda-
mental problem is that decimal digits require 4 bits, the
alphanumeric characters require 6 bits. Three obvious
alternatives were considered - 6 bits for all, with 2 bits
wasted on numeric data; 4 bits for digits, 8 for alpha-
numeric, with 2 bits wasted on alphanumeric; and 4 bits
for digits, 6 for alphanumeric, which would require adop-
tion of a 12-bit module as the minimum addressable
element. The 7-bit character, which incorporated a binary
recoding of decimal digit pairs, was also briefly examined.

The 4/6 approach was rejected because (a) it was desired
to have the versatility and power of manipulating character
streams and addressing individual characters, even in
models where decimal arithmetic is not used, (b) limiting
the alphabetic character to 6 bits seemed short-sighted,
and (c) the engineering complexities of this approach
might well cost more than the wasted bits in the character.

The straight-6 approach, used in the IBM 702-7080 and
1401-7010 families, as well as in other manufacturers'
systems, had the advantages of familiar usage, existing
1/0 equipment, simple specification of field structure, and
commensurability with a 48-bit floating-point word and a
24-bit instruction field.

The 4/8 approach, used in the IBM 650-7074 family
and elsewhere, had greater coding efficiency, spare bits in
the alphabetic set (allowing the set to grow), and commen-
surability with a 32/64-bit floating-point word and a 16-
bit instruction field. Most important of these factors was
coding efficiency, which arises from the fact that the use
of numeric data in business records is more than twice as
frequent as alphanumeric. This efficiency implies, for a
given hardware investment, better use of core storage,
faster tapes, and more capacious disks.

Ffoating-point word length, 48 us 32/64. For large
models addition time goes up slowly with word length,
and multiplication time rises almost linearly. For small,
serial models, addition time rises linearly and multiplica-
tion as the square of word length. Input/output time for
data files rises linearly. Large machines more often require
high precision; small machines more urgently require short
operands. For this aspect of the basic format problem,
then, definite conflicts arose because of compatibility.

Good data were unavailable on the distribution of
required precision by the number of problems or running
time. Indeed, accurate measures could not be acquired on
such coarse parameters as frequency of double-precision
operation on 36-bit and 48-bit machines. The question
became whether to force all problems to the longer 48-bit
word, or whether to provide 64 to take care of precision-
sensitive problems adequately, and either 32 or 36 to give
faster speed and better coding efficiency for the rest. The
choice was made for the IBM System/360 to have both
64- and 32-bit length floating point. This choice offers the
user the option of making the speed/space vs precision
trade-off to best suit his requirements. The user of the large
models is expected to employ 64-bit words most of the
time. The user of the smaller models will find the 32-bit
length advantageous in most of his work. All floating-
point models have both lengths and operate identically.

Hexadecimal floating-point radix. With no conflcts in
questions of large vs small machines, base 16 was selected
for floating point. Studies by Sweeney' show that the fre-
quency of pre-shift, overflow, and precision-loss post-shift
on floating-point addition are substantially reduced by this
choice. He has shown that, compared with base 2, the per-
centage frequency of occurrence of overflow is 5 versus 20,
pre-shift is 43 versus 58, and precision-loss post-shift is
11 versus 18. Thus speed is noticeably enhanced. Also,
simpler shifting paths, with fewer logic levels, will accom-
plish a higher proportion of all required pre-shifting in a
single pass. For example, circuits shifting 0, 1, 2, 3, or 4
binary places cover 82% of the base 2 pre-shifts. Sub-
stantially simpler circuits shifting 0, 1, or 2 hexadecimal
places cover 93% of all base 16 pre-shifts. This simplifica-
tion yields higher speed for the large models and lower
cost for the small ones.

The most substantial disadvantage of adopting base 16
is the shift in bit usage from exponent to fraction. Thus,
for a given range and a given minimum precision, base 16
requires 2 fewer exponent bits and 3 more fraction bits
than does base 2. Alternatively and equivalently, rounding
and truncation effects are 8 times as large for a given
fraction length. For the 64-bit length, this is no problem.
For the 32-bit length, with its 24-bit fraction, the minimum
precision is reduced to the equivalent of 21 bits. Because
the 64-bit length was available for problems where the
minimum precision cramped the user, the greater speed
and simplicity of base 16 was chosen.

Significance arithmetic. Many schemes yielding an esti-
mate of the significance of computed results have been
proposed. One such scheme, a modified form of unnor-
malized arithmetic, was for a time incorporated in the
design. The scheme was finally discarded when simulation
runs showed this mode of operation to cost about one
hexadecimal digit of actual significance developed, as
compared with normalized operation. Furthermore, the 91

ARCHITECTURE OF THE IBM SYSTEM/360

significance estimate yielded for a given problem varied
substantially with the test data used.

Sign representations. For the fixed-point arithmetic
system, which is binary, the two’s complement representa-
tion for negative numbers was selected. The well-known
virtues of this system are the unique representation
of zero and the absence of recomplementation. These
substantial advantages are augmented by several properties
especially useful in address arithmetic, particularly in the
large models, where address arithmetic has its own hard-
ware. With two’s complement notation, this indexing
hardware requires no true/complement gates and thus
works faster. In the smaller, serial models, the fact that
high-order bits of address arithmetic can be elided with-
out changing the low-order bits also permits a gain in
speed. The same truncation property simplifies double-
precision calculations. Furthermore, for table calculation,
rounding or truncation to an integer changes all variables
in the same direction, thus giving a more acceptable
distribution than does an absolute-value-plus-sign repre-
sentation.

The established commercial rounding convention made
the use of complement notation awkward for decimal
data; therefore, absolute-value-plus-sign is used here. In
floating point, the engineering virtues of normalizing only
high-order zeros, and of having all zeros represent the
smallest possible number, decided the choice in favor of
absolute-value-plus-sign.

Variable- versus fixed-length decimal fields. Since the
fields of business records vary substantially in length, cod-
ing efficiency (and hence tape speed, file capacity, CPU
speed, etc.) can be gained by operating directly on vari-
able-length fields. This is easy for serial-by-byte machines,
and the IBM 1401-7010 and 702-7080 families are among
those so designed. A less flexible structure is more appro-
priate for a more parallel machine, and the IBM 650-7074
family is among those designed with fixed-word-length
decimal arithmetic.

As one would expect, the storage efficiency advantage of
the variable data format is diminished by the extra instruc-
tion information required for length specification. While
the fixed format is preferable for the larger machines, the
variable format was adopted because (a) the small com-
mercial users are numerous and only recently trained in
variable-format concepts, and (b) the large commercial
system is usually 1/0 limited; hence the internal perform-
ance disadvantage of the variable format is more than
compensated by the gain in effective tape rate.

Decimal accumulators versus storage-storage operation.
A closely related question involving large/small models
concerned the use of an accumulator as one of the oper-
ands on decimal arithmetic, versus the use of storage
locations for all operands and results. This issue is per-
tinent even after a decision has been made for variable-

AMDAHL, BLAAUW AND BROOKS

92

length fields in storage; for example, it distinguishes IBM
702-7080 arithmetic from that of the IBM 1401-7010
family.

The large models readily afford registers or local stores
and get a speed enhancement from using these as ac-
cumulators. For the small model, using core storage for
logical registers, addition to an accumulator is no faster
than addition to a programmer-specified location. Addition
of two arbitrary operands and storage of the result becomes
LOAD, ADD, STORE, however, and this operation is
substantially slower for the small models than the MOVE,
ADD sequence appropriate to storage-storage operation.
Business arithmetic operations (as hand coded and es-
pecially as compiled from COBOL) often take this latter
form and rarely occur in strings where intermediate
results are profitably held in accumulators. In address
arithmetic and floating-point arithmetic, quite the opposite
is true.

Field specification: word-marks versus length. Variable-
length fields can be specified in the data via delimiter
characters or word-marks, or in the instruction via specifi-
cation ef field length or start-finish limits. For business
data, the word-mark has some slight advantage in storage
efficiency: one extra bit per 8-bit character would cost
less than 4 extra length bits per 16-bit address. Further-
more, instructions, and hence addresses, usually occupy
most core storage space in business computers. However,
the word-mark approach implies the use of word-marks on
instructions, too, and here the cost is without compensating
function. The same is true of all fixed-field data, an im-
portant consideration in a general-purpose design. On
balance, storage efficiency is about equal; the field speci-
fication was put in the instruction to allow all data combi-
nations to be valid and to give easier and more direct
programming, particularly since it provides convenient
addressing of parts of fields. Length was chosen over limit
specification to simplify program relocation and instruc-
tion modification.

ASCZZ us BCD codes. The selection of the 8-bit char-
acter size in 1961 proved wise by 1963, when the American
Standards Association adopted a 7-bit standard character
code for information interchange (ASCII). This 7-bit
code is now under final consideration by the International
Standards Organization for adoption as an interna-
tional standards recommendation. The question became
“Why not adopt ASCII as the only internal code for
System/360?’

The reasons against such exclusive adoption was the
widespread use of the BCD code derived from and easily
translated to the IBM card code. To facilitate use of both
codes, the central processing units are designed with a
high degree of code independence, with generalized code
translation facilities, and with program-selectable BCD or
ASCII modes for code-dependent instructions. Neverthe-

Figure 2a Extended binary-coded-decimal (BCD) interchange code.

00 01 10 11 00 01 10 11 00 01 10 1 1

Figure 2b 8-bit representation of the 7-bit American Standard Code for Information Interchange (ASCII).

L 4321 00
x5

OOOO
0001

NULL

€OM 0011

EOA 0010

SOM

0100 E Q T

0101 WRU

0110 RU

0111 BELL

1000 BKSP

1001 HT

1010

SI 1111

so 1110

CR 1101

FF 1100

VT 1011

LF

01 10 11 00 01 10 11

I

00 01 10 1 1

0 -

00 01 10 11

-1 93

ARCHITECTURE OF THE: IBM SYSTEM/360

94

less, a choice had to be made for the code-sensitive 1/0
devices and for the programming support, and the solution
was to offer both codes, fully supported, as a user option.
Systems with either option will, of course, easily read or
write 1/0 media with the other code. The extended BCD
interchange code and an 8-bit representation of the 7-bit
ASCII are shown in Fig. 2.

Boundary alignment. A major compatibility problem
concerned alignment of field boundaries. Different models
were to have different widths of storage and data flow,
and therefore each model had a different set of preferences.
For the 8-bit wide model the characters might have been
aligned on character boundaries, with no further con-
straints. In the 64-bit wide model it might have been pre-
ferred to have no fields split between different 64-bit
double-words. The general rule adopted (Fig. 3) was that
each fixed field must begin at a multiple of its field length,
and variable-length decimal and character fields are uncon-
strained and are processed serially in all models. All
models must insure that programmers will adhere to these
rules. This policing is essential to prevent the use of
technically invalid programs that might work beautifully
on small models but not on large ones. Such an outcome
would undermine compatibility. The general rule, which
has very few and very minor exceptions, is that invalidities
defined in the manual are detected in the hardware and
cause an interruption. This type of interruption is distinct
from an interruption caused by machine malfunctions.

Instruction decisions

Pushdown stack us addressed registers. Serious considera-
tion was given to a design based on a pushdown accumu-
lator or stack.’ This plan was abandoned in favor of
several registers, each explicitly addressed. Since the
advantages of the pushdown organization are discussed in
the literature: it suffices here to enumerate the disad-
vantages which prompted the decision to use an addressed-
register organization:

1. The performance advantage of a pushdown stack organi-
zation is derived principally from the presence of several
fast registers, not from the way they are used or specified.

2. The fraction of “surfacings” of data in the stack which
are “profitable,” i.e., what was needed next, is about
one-half in general use, because of the occurrence of
repeated operands (both constants and common factors).
This suggests the use of operations such as TOP and SWAP,
which respectively copy submerged data to the active
positions and assist in clearing submerged data when the
information is no longer needed.

3. With TOP’s and SWAP’s counted, the substantial in-
struction density gained by the widespread use of implicit
addresses is about equalled by that of the same instruc-

AMDAHL, BLAAUW AND BROOKS

tions with explicit, but truncated, addresses which specify
only the fast registers.

4. In any practical implementation, the depth of the stack
has a limit. The register housekeeping eliminated by the
pushdown organization reappears as management of a
finite-depth stack and as specification of locations of
submerged data for TOP’S and SWAP’S. Further, when
part of a full stack must be dumped to make room for new
data, it is the bottom part, not the active part, which
should be dumped.

5. Subroutine transparency, i.e., the ability to use a sub-
routine recursively, is one of the apparent advantages of
the stack. However, the disadvantage is that the trans-
parency does not materialize unless additional independ-
ent stacks are introduced for addressing purposes.

6. Fitting variable-length fields into a fixed-width stack is
awkward.

In the final analysis, the stack organization would have
been about break-even for a system intended principally for
scientific computing. Here the general-purpose objective
weighed heavily in favor of the more flexible addressed-
register organization.

Full us truncated addresses. From the beginning, the
major challenge of compatibility lay in storage addressing.
It was clear that large models would require storage
capacities in the millions of characters. Small (serial)
models would require short addresses to conserve precious
core space and instruction fetch time. Some help was given
by the decision to use register addressing, which reduces
address appearances in the instruction stream by a factor
approaching 2.

An early decision had dictated that all addresses had to
be indexable, and that a mechanism had to be provided
for making all programs easily relocatable. The indexing
technique had fully proved its worth in current ~ystems.~
This technique suggested that abundant address size could
be attained through a full-sized index register, used as a
base. This approach, coupled with a truncated address in
the instruction, gives consequent gains in instruction
density. The base-register approach was adopted, and
then augmented, for some instructions, with a second level
of indexing.

Now the question was: How much capacity was to be
made directly addressable, and how much addressable
only via base registers? Some early uses of base register
techniques had been fairly unsuccessful, principally be-
cause of awkward transitions between direct and base
addressing. It was decided to commit the system com-
pletely to a base-register technique; the direct part of the
address, the displacement, was made so small (12 bits,
or 4096 characters) that direct addressing is a practical
programming technique only on very small models. This

DOUBLE WORD

WORD WORD

D

>

HALFWDRD - r H A L N V D R D .
I

I LONG FLOATING-POIAT NUMBER I I I
FRACTION

56

-BYTE"

BYTE- rsyTE-"r

I
1 L '

71

I

I I
ZONED DECIMAL NUMBER

I

+[""j """

I

FIXED-LENGTH LOGICAL INFORMATION I
LOGICAL DATA

0 31

VARIABLE-LENGTH LOGICAL INFORMATION

I 8 I
"""

8
CHARACTER CHARACTER

"""

INSTRUCTIONS BY FORMAT TYPE RR FORMAT

OP CODE
8 4

RI R 2
4

L
0 7 I I 15

I

?X FORMAT

8
6 2 x 2 RI OP CODE
4 4 4 12

02

I I ""_ I
4

DIGIT SIGN DIGIT ZONE DIGIT
4 4 4 4

""_
I

CHARACTER """_

RS FORMAT

8 4 4 4
OP CODE 62 R3 RI

12
0 2

SI FORMAT

4
DP CODE

8 8
I 2

12
Dl BI

0 7 15 19 31

SS FORMAT I
8 4 4 4 4 12

OP CODE
12
0 2 8 2 Dl B I L 2 LI

0 7 II 15 19 31 35 47

Figure 3 Boundary alignment of formats. 95

ARCHITECTURE OF THE IBM SYSTEM/360

96

commitment implies that all programs are location-inde-
pendent, except for constants used to load the base
registers. Thus, all programs can easily be relocated. This
commitment also implies that the programming support
effectively and efficiently handles the mechanics of base-
register use. The assembler automatically constructs and
assigns base-plus-displacement addresses as it constructs
the symbol table. The compilers not only do this, but also
allocate base registers to give efficient programs.

Decimal us binary addressing. It was decided to use
binary rather than decimal addressing, because (a) as-
sembly programs remove the user one level from the
address, thus reducing the importance of familiar usage,
(b) binary addressing is more efficient in the ratio 3.32/
4.00, and (c) table exploitation is easier and more gen-
eral because any datum can be made into or added to
a binary address, yielding a valid address. This decision,
however, represented some conflict with past approaches.
Machines for purely business applications had often used
decimal addressing (in the ancestral machine of the
family). Most business computers now have binary ad-
dressing or have evolved to mixed-radix addressing.

Multiple accumulators. An extrapolation of technologi-
cal trends indicated the probable availability of small,
high-speed storage. Consequently, the design uses a sub-
stantial number of logically identifiable registers, which
are physically realized in core storage, local high-speed
storage, or transistors, according to the model. There are
sixteen 32-bit general-purpose registers and four 64-bit
floating-point registers in the logical design, with room
for expansion to eight floating-point registers. Surprisingly
enough, the multiple-register decision was not a large-
small conflict. Each model has an appropriate (and differ-
ent) mechanization of the same logical design.

Storage hierarchies. Technology promises to yield a
continuing spectrum of storage systems whose speed
varies inversely with capacity for equal cost-per-bit. Of
equal significance, problem requirements naturally follow
a matching pattern - small quantities of data are used
with great frequency, medium quantities with medium
frequency, and very large quantities with low frequency.
These facts promise substantial performance/cost ad-
vantages if storage hierarchies can be effectively used.

It was decided to accept the engineering, architec-
tural, and programming disciplines required for stor-
age-hierarchy use. The engineer must accommodate in
one system several storage technologies, with separate
speeds, circuits, power requirements, busing needs, etc.,
all requiring asynchronous operation of all storage with
respect to the CPU. The system programmer must contend
with awkward boundaries within total storage capacity
and must allocate usage. He must devise addressing for
very large capacities, block transfers, and means of
handling, indexing across and providing protection across

gaps in the addressing sequence.
Separate us universal accumulators. There are several

advantages of having fixed- and floating-point arithmetic
use the same logical (as opposed to physical) registers.
There are some less obvious disadvantages which weighed
in favor of separate accumulator sets. First, in a given
register specification (4 bits, in our case) the use of sepa-
rate sets permits more registers to be specified because of
the information implications of the operation code. Sec-
ond, in the large models instruction execution and the
preparation of later instructions are done concurrently
in separate units. To use a single register set would couple
these closely, and reduce the asynchronous concurrency
that can be attained. Historically, index registers have
been separated from fixed-point registers, limiting analy-
sis of register allocation to index quantities only. Inte-
gration of these facilities brings the full power of the fixed-
point arithmetic operation set to bear upon indexing
computations. The advantages of the integration appear
throughout program execution (even compiler and as-
sembly execution), whereas the register allocation burdens
only compilation and assembly.

Znput/output system

The method of input/output control would have been a
major compatibility problem were it not for the recognition
of the distinction between logical and physical structures.
Small machines use CPU hardware for 1/0 functions;
large machines demand several independent channels,
capable of operating concurrently with the CPU and with
each other. Such large-machine channels often each con-
tain more components than an entire small system.

Channel instructions. The logical design considers the
channel as an independently operating entity. The CPU
program starts the channel operation by specifying the
beginning of a channel program and the unit to be used.
The channel instructions, specialized for the 1/0 function,
specify storage blocks to be read or written, unit oper-
ations, conditional and unconditional branches within the
channel program, etc. When the channel program ends,
the CPU program is interrupted, and complete channel
and device status information are available.

An especially valuable feature is command chaining, the
ability of successive channel instructions to give a sequence
of different operations to the unit, such as SEARCH,
READ, WRITE, READ FOR CHECK. This feature per-
mits devices to be reinstructed in very short times, thus
substantially enhancing effective speed.

Standard interface. The generalization of the com-
munication between the central processing unit and an
input/output device has yielded a channel which presents
a standard interface to the device control unit. This inter-
face was achieved by making the channel design trans-
parent, passing not only data, but also control and status

AMDAHL, BLAAUW AND BROOKS

information between storage and device. AU functions
peculiar to the device are placed in the control unit. The
interface requires a total of 29 lines and is made inde-
pendent of time through the use of interlocking signals.

Implementation. In small models, the flow of data and
control information is time-shared between the CPU and
the channel function. When a byte of data appears from an
1/0 device, the CPU is seized, dumped, used and restored.
Although the maximum data rate handled is lower (and
the interference with CPU computation higher) than with
separate hardware, the function is identical.

Once the channel becomes a conceptual entity, using
time-shared hardware, one may have a large number of
channels at virtually no cost save the core storage space
for the governing control words. This kind of multiplex
channel embodies up to 256 conceptual channels, all of
which may be concurrently operating, when the total data
rate is within acceptable limits. The multiplexing consti-
tutes a major advance for communications-based systems.

Conclusion

This paper has shown how the design features were chosen
for the logical structure of the six models that com-
prise the IBM System/360. The rationale has been given
For the adoption of the data formats, the instruction set,
md the input/output controls. The main features of the
new machine organization are its general-purpose utility
For many types of data processing, the new approaches

to large-capacity storage, and the machine-language com-
patibility among the six models.

The contributions discussed in this paper may be sum-
marized as follows :

1. The relative independence of logical structure and
physical realization permits efficient implementation at
various levels of performance.

2. Tasks that are common to operating a system for
most applications require a complement of instructions
and system functions that may serve as a base for the
addition of application-oriented functions.

3. The formats, instructions, register assignment, and
over-all functions such as protection and interruption of
a computer can be so defined that they apply to many
levels of performance and that they permit diverse special-
ization for particular applications.

It is hoped that the discussions of these design features
will shed some light on the present and future needs of
data processing system organization.

Appendices

The design resulting from the decision process sketched
above is tabulated in five appendices showing formats,
data and instruction codes, storage assignments and
interruption action. (Appendices I through 5 appear on
the following four pages.)

Acknowledgments

b e implementation of System/360 depends upon diverse
ievelopments by many colleagues. The most important of
hese developments were glass-encapsulated semi-inte-
rated semiconductor components, printed circuit back-
)anels and interconnections, new memories, read-only
torages and microprogram techniques, new 1/0 devices,
rnd a new level and approach to software support.

The scope of the compatibility objective and of the whole
;ystem/360 undertaking was largely due to B. 0. Evans,
Jata Systems Division Vice-President-Development.

References
1. D. W. Sweeney, “An-! malysis of Floating-Poir It Addition

and Shifting,” to be published in the ZBM-Systems Journal.
2. See, for example, R. S . Barton, “A New Approach to the

Functional Design of a Digital Computer,” Proc. WJCC 19,

3. F. P. Brooks, Jr., “Recent Developments in Computer
Organization,” Adcances in Electronics 18, 45-64 (1963).

4. G. A. Blaauw, “Indexing,” in Planning a Computer System,
W. Buchholz, ed., McGraw-Hill Book Company Inc., 1962,
pp. 150-178.

. .

393-396 (1961).

Received January 21, 1964 97

ARCHITECTURE OF THE IBM SYSTEM/360

m

!i Appendix I All operation codes are shown in the following table.
The 8-bit codes are grouped by the main classes, such as fixed-point
arithmetic, floating-point arithmetic and logical operations. The
codes are furthermore grouped according to the five main instruc-
tion formats RR (register-register), RX (register-indexed storage loca-

5
: m

E tion), RS (register-storage), SI (storage-immediate information) and
SS (storage-storage).

rg
OD

OPERATION CODES

Appendix 2 continued
from addressable registers and storage. The PSW is stored upon
interruption. The Channel Command Word controls input/output
operation and sequencing. The commands which may be given to
the channel are listed as part of the table. The Channel Address
Word is used to initiate input/output sequencing. The Channel Status
Word indicates the channel status at the completion of an input/
output operation or, when specified, during an 1/0 operation.

CONTROL WORD FORMATS

FORMAT RR

CLASS BRANCHING AN0
S I ~ ~ ~ L I ~ L L G

x x x x o o o o x x x x

0000
0001
0010
0011
0100 S E T PROGRAM MASK
0101 BRANCH AN0 L I N K
0110 BRANCH ON COUNT
0111 BRANCH/CONOITION
1000 SET KEY
1001 INSERT KEY
1010 SUPERVISOR CALL
1011
1100
1101
1110
1111

FORMAT RX

C L A S S

x x x x

0 0 0 0
0001
0010
001 1
0100
0101
0110
0111
1000
I001
1010
1011
1100
1101
1110
1111

F I X E D - P O I N T
HALFWORO

AY!LEEANSHLJ1P?G

o l o o x x x x

STORE
LOAD ADDRESS
STORE CHARACTER
INSERT CHARACTER
EXECUTE
BRANCH AN0 L I N K
BRANCH ON COUNT

LOAD
BRANCH/CONOITlON

COMPARE
ADO
SUBTRACT
M U L T I P L Y

CONVERT-DECIMAL
CONVERT-BINARY

RR
F I X E D - P O I N T

FULLWOROI
A N D E & A L

o o o l x x x x

LOAD P O S I T I V E
L O A D N E G A T I V E
LOAD AN0 TEST
LOAO COMPLEMENT

COMPARE L O G I C A L
AN0

OR
E X C L U S I V E OR
LOAO
COMPARE
A 0 0
SUBTRACT
M U L T I P L Y
D I V I D E
ADO L O G I C A L

RR RR

F L O A T I N G - P O I N T F L O A T I N G - P O I N T
LQNG

o o l o x x x x

L O A D P O S I T I V E
LOAD NEGATIVE
LOAD AN0 TEST
LOAD COMPLEMENT
HALVE

LOAD
COMPARE
ADD N
SUBTRACT N
MULT I P L Y
O I V I O E
ADO U

SUBTRACT LOGICAL SUBTRACT U

RX
F I X E D - P O I N T

RX

~~

% N E 1

o o l l x x x x

L O A D P O S I T I V E
LOAD NEGATIVE
LOAD AN0 TEST
LOAO COMPLEMENT
H A L V E

LOAO
COMPARE
ADO N
SUBTRACT N
M U L T I P L Y
D I V I D E
ADO U
SUBTRACT U

RX

A U Q 5 r n L
FULLWORD FLOATING-POINT FLOATING-POINT

LPY4 SnmI

o l o l x x x x OAlOXXXX o l l l x x x x

STORE STORE STORE

AN0
COMPARE L O G I C A L
OR
E X C L U S I V E OR
LOAD
COMPARE
ADD
SUBTRACT
MULT I P L Y
D I V I D E
ADO L O G I C A L
SUBTRACT LOGICAL

LOAD
COMPARE
A 0 0 N
SUBTRACT N
M U L T I P L Y
O I V I O E
ADD U
SUBTRACT U

LOAO
COMPARE
ADO N
SUBTRACT N
M U L T I P L Y
D I V I D E
A 0 0 U
SUBTRACT U

B a s e a n d I n d e x R e g i s t e r s

rO-O-O-O-O-O-O-O-O-O-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-3-3~
I I I
I i I BASE ADDRESS OR I N D E X I
I I I
L0-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-B-9-0-1-2-3-4-5-6-7-8-9-0-1J

0 - 7 I g n o r e d
8 - 31 B a s e a d d r e s s or i n d e x

-3-3-3-3-3-3-3-3-4-4-4-4-4-4-4-4-4-4-5-5-5-5-5-5-S-5-5-5-6-6-6-61
I l l I I

INSTRUCTION ADDRESS I
I

0 - 7 S y s t e m m a s k
0 M u l t i p l e x o r c h a n n e L m a s k
I S e l e c t o r c h a n n e L 1 m a s k
2 S e l e c t o r c h a n n e l 2 m a s k
3 S e l e c t o r c h a n n e L 3 m a s k
4 S e l e c t o r c h a n n e l 4 m a s k
5 S e l e c t o r c h a n n e l 5 m a s k
6 S e l e c t o r c h a n n e l 6 m a s k

8 - 11 P r o t e c t i o n k e y
7 E x t e r n a l mask

12 A S C I I m o d e (A)
13
14

M a c h i n e c h e c k m a s k (M)
w a i t s t a t e (w)

15 P r o b l e m s t a t e (P)

32 - 33 I n s t r u c t i o n L e n g t h c o d e (I L C)
1 6 - 31 I n t e r r u p t i o n c o d e

34 - 35 C o n d i t i o n c o d e (C C)
36 - 39 P r o g r a m m a r k

36 F i x e d - p o i n t o v e r f l o w m a s k
37 D e c i m a l o v e r f L o u m a s k
38 E x p o n e n t u n d e r f L o w m a s k
39 S i g n i f i c a n c e m a s k

Appendix I continued

FORMAT RS.SI
BRANCHING,

CLASS STATUS SWITCHING """"-"_ AND S H I F T I N G

x x x x l o o o x x x x

0001
0 0 0 0 SET SYSTEM MASK

0010 LOAD PSW
0011 DIAGNOSE
0100 WRITE D IRECT
0 1 0 1 REA0 DIRECT
0 1 1 0 BRANCH/HIGH
0111 BRANCH/LOW-EQUAL
1000 S H I F T R I G H T S L
1001 S H I F T L E F T S L

1011 S H I F T L E F T S
1010 S H I F T R I G H T S

1100 S H I F T R I G H T D L
1101 S H I F T L E F T D L
1110 S H I F T R I G H T D
1111 S H I F T L E F T D

FORMAT
CLASS

x x x x l l o o x x x x

0 0 0 0
0001
0010
0011
0100
0101
0 1 1 0
0111
1000
1001
1010
1011
1100
1101
1110
1111

FIXED-POINT.
LOGICAL. AND

R S s S I

lNeL!lLoUlPuI

l o o l x x x x

TEST UNDER MASK
STORE MULTIPLE

MOVE

AN0

OR
COMPARE LOGICAL

L O A 0 M U L T I P L E
EXCLUSIVE OR

START I/O
TEST 1/0
HALT 1/0
TEST CHANNEL

MOVE NUMERIC
MOVE
MOVE ZONE
AND
COMPARE LOGICAL
OR
EXCLUSIVE OR

TRANSLATE
TRANSLATE AND TESl
E D I T
E D I T AND MARK

l o l o x x x x 1 O l l X X X X

5s
oEZlMAL

l l l 0 x x x x 1 l l l X X X X

MOVE W OFFSET
PACK
UNPACK

ZERO AND ADD
COMPARE
ADO
SUBTRACT
MULTIPLY
D I V I D E

* L e g e n d E SL = S i n g l e l o g i c a l S = S i n g l e

N = N o r m a l i z e d U = U n n o r m a l i z e d

D L = Double l o g i c a l D = D o u b l e 3 m n e s m Appendix 2 The formats of all control words required for CPU and

% channel operation are shown in the following table. The base and

E

F

1
1 index registers provide 24 bits of address and are specified by the

B and X fields of instructions. The Program Status Word controls
instruction sequencing and indicates the complete CPU status apart

VJ
2
1

-.
w m
0

d
rg

Appendix 2 continued

C h a n n e l C o m m a n d W o r d

~O-O-O-O-O-O-O-O-O-O-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-3-3~-

I COMMAND CODE I
I I I

LO-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-8-7-8-9-0-~-2-3-4-5-6-7-~-9-0-~J--- I I I
DATA ADDRESS I

- r3-3-3-3-3-3-3-3-4-4-4-4-4-4-4-4-4-4-5-5-5-5-5-5-5-5-5-5-6-6-6-6~

I I I I I
I FLAGS I O 0 01 I COUNT
I I I I

" ~2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-0-9-0-1-2-3-4-5-6-7-8-9-0-1-2-3J

I
I

0 - 7 Command code
8 - 31 D a t a a d d r e s s
32 - 36 Command f l a g s

32 C h a i n d a t a f l a g

34 S u p p r e s s l e n g t h i n d i c a t i o n f l a g
33 C h a i n c o m m a n d f l a g

35 S k i p f l a g
36 P r o g r a m - c o n t r o l l e d i n t e r r u p t i o n f l a g

37 - 39 Z e r o
40 - 47 I g n o r e d
48 - 63 C o u n t

C h a n n e l A d d r e s s W o r d

rO-O-O-O-O-O-O-O-O-O-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-3-~,

I KEY 10 0 0 01 COMMAND ADDRESS I
I I I

L0-1-2-3-4-5-6-7-8-9-0-1"3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-8-9-~-~J I I I I
I

0 - 3 P r o t e c t i o n k e y
4 - 7 Z e r o
8 - 31 C o m m a n d a d d r e s s

C h a n n e l S t a t u s W o r d

r0-0-0-0-0-0-0-0-0-0-~-1-1-1-~-1-~-~-1-1-2-~-2-~-~-~~~-~-~~~~3~3,~~~

I KEY IO 0 0 01
I I I

COMMAND ADDRESS I
I L0-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-~-g-0-~~-- I I I

I

"r3~3"3"3"3"3"3~3"4-4"4"4-4-4-4-4-4-4-5-5-5-5-5-~-5-5-5-5~~-~-~-6,
I
I

I I
STATUS I

I I
COUNT I

--~2-3-4--5"&7-8-9-O--1-2-3-4--5-6-7-B-9-O-~-~-3-4-~-~-7-~-g-~-~-~-~J I

0 - 3 P r o t e c t i o n k e y
4 - 7 Z e r o

32 - 47 S t a t u s
8 - 31 C o m m a n d a d d r e s s

32 A t t e n t i o n
33 S t a t u s m o d i f i e r
34 C o n t r o l u n i t e n d

36 C h a n n e l e n d

38 U n i t c h e c k
37 D e v i c e e n d

40 P r o g r a m - c o n t r o l l e d i n t e r r u p t i o n
39 U n i t e x c e p t i o n

35 B u s y

(continued overleaf)

9

6 8
d

-F
m

i Appendix 2 continued
41 Incorrect length
42 Program aheck
43 Protection check
44 Channel data check
45 Channel control check

47 Chaining check

5
m 46 Interface control check

E
48 - 63 Count

Appendix 3 All permanently assigned storage locations are shown in

this table. These locations are addressed by the CPU and 1/0 chan-

nels during initial program loading, during interruptions and in

order to update the timer. During initial program loading 24 bytes

are read from a specified input device into locations 0 to 23. This
information is subsequently used as CCW's to specify the locations

of further input information and as a PSW to control CPU operation

after the loading operation is completed. During an interruption the
current PSW is stored in the "old" location and the PSW from the
"new" location is obtained as the next PSW. The timer is counted

down and provides an interrupt when zero is passed. All perma-

nently assigned locations may also be addressed by the program.

PERMANENT STORAGE ASSIGNMENT

AOPBESS CENGIY EuREQsE
0 0000 0000 double word
8 0000 1000 double word

Initial program Loading PSW

1 6 0001 0000 double word
Initial program loading CCWl

24 0001 1000 double word External old PSW
Initlal program loadlng CCW2

40 0010 1000 double word
3 2 0010 0000 double word Supervisor call old PSW

48 0011 0000 double word
Program old PSW
Machine old PSW

56 0011 1000 double word Input/output old PSW
64 0100 0000 double word Channel status word
72 0100 1000 word
76 0100 1100 word

Channel address word
Unused

80 0101 0000 word Timer
84 0101 0100 word
88 0101 1000 double word

Unused
External new PSW

96 0110 0000 double word
104 0110 1000 double word

Supervisor call new PSW
Program new PSW

120 0 1 1 1 1000 double word
112 0 1 1 1 0000 double word Machine new PSW

Input/output new PSW
128 1000 0000 Diagnostic scan-out area*

"-
The size o f the dlagnostic scan-out area depends upon the particular

model and 1 / 0 channels.

Appendix 4 continued
LSSSEd

busy
avallabla Unlt and channel available

Unit or channel busy
carry A carry out of the sign position occurs
complete
CSW ready

Last result byte nonzero

CSW stored
Channel status word ready for test or interruption
Channel status word stored

equal. Operands compare equal
F
g zero

FuLlword
Result is greater than zero

H Halfword
halted Data transmission stopped. Unit in halt-reset mode
high
incomplete

Flrst operand compares high
Nonzero result byte; not last

L Long precision
1 zero
L O W

Result i s less than zero
First operand compares low

mixed Selected bits are both zero and one
not oper Unlt or channel not operational
not working Unit o r channel not working
not zero
one
sverflow Result overftows
S
stopped
working
zero

Result is not all Zero
Selected bits are one

Short precision
Data transmlssion stopped
Unit o r channel working
Result or selected bits are zero

lscn

The conditlon code also may be changed by LOA0 PSW. SET SYSTEM MASK.
DIAGNOSE. and by an Interruption..

Appendix 5 All interruptions which may occur are shown in the fol-

lowing table. Indicated here are the code in the old PSW which

identifies the source of the interruption, the mask bits which may be
used to prevent an interruption, and the manner in which instruction

execution is affected. The instruction to be performed next if the in-

terruption had not occurred is indicated in the instruction address

field of the old PSW. The length of the preceding instructions, if
available, is shown in the instruction length code, ILC, as is further

detailed in the table.

INTERRUPTION ACTION

INTERRUPTION SOURCE INTERRUPTION CODE MASK ILC INSTRUCTION
I P P N I I F ~ e L I Q N - - - - - - - P B I - B I l s " s r L S -

I=euf&uf& (old PSW 5 6 . new PSW 120. priority 4)

Multiplexor channel 00000000 aaaaeaaa 0 x
Selector channel 1 00000001 aaaaaaaa 1 x
SeLector channel 2 00000010 aaaaaaaa 2 x

complete
complete
complete

Appendix 4 All instructions which set the condition code (bits 32 and

33 of the PSW) are listed in the following table. All other instructions

leave the condition code unchanged. The eondition code determines

the outcome of a BRANCH ON CONDITION instruction. The four-bit mask

contained in this instruction specifies which code settings will cause

the branch to be taken.

CONDITION CODE SETTING

Q 2 - a

ADO H/F
ADD LOGICAL
COMPARE H/F
LOAD AND TEST
LOAD COMPLEMENT
LOAD NEGATIVE
L O A 0 P O S I T I V E
SHIFT LEFT DOUBLE
SHIFT LEFT S INGLE
SHIFT RIGHT DOUBLE
SHIFT RIGHT S INGLE
SUBTRACT H/F
SUBTRACT LOGICAL

ElX+P-PQini-&iihm.S*iS
z e p o
z e r o
e q u a l
z e r o
z e r o
z e r o
z e r o
z e r o
z e r o
z e r o
z e r o
z e r o
"

n o t z e r o
1 z e r o

1 z e r o
1 z e r o
1 z e r o

L O W

1 z e r o
1 z e r o
1 z e r o
1 z e r o
1 z e r o

n o t z e r o

"

z e r o . c a r t - y
g z e r o

h i g h
g z e r o
g z e r o

g z e r o

g z e r o
g z e r o

g z e r o
g z e r o

z e r o s c a r r y
g z e r o

"

o v e r f l o w
c a r r y
"

" .
o v e r f l o w

o v e r f l o w

o v e r f l o w
o v e r f l o w

"

"

o v e r f l o w

"

c a r r y

ADO DECIMAL z e r o 1 z e r o g z e r o o v e r f l o w
COMPARE DECIMAL
SUBTRACT DECIMAL

e q u a l low
z e r o L z e r o g z e r o o v e r f l o w

ZERO AND ADD z e r o L z e r o g z e r o o v e r f l o w

- Dqcimal """_" A r i t h m & j =

h i g h "

ADO NORMALIZED S/L
ADD UNNORMALIZED S / L

z e r o
z e r o

COMPARE S /L
LOAD AND TEST S/L

e q u a l

LOAD COMPLEMENT S / L z e r o
z e r o

LOAD NEGATIVE S/L
L O A D P O S I T I V E S / L z e r o

z e r o

SUBTRACT NORMALIZED S/L Z e r o
SUBTRACT UNNORMALIZEO S / L z e r o

FlQntinS=el?inlt-Arithmmtlc

b
!a
Q

2
%

=i rn
Ll?alS*l-Q2SCStiQEi

AND z e r o
COMPARE L O G I C A L e q u a l
E D I T
E D I T AND MARK

z e r o
z e r o

EXCLUSIVE OR z e r o
OR z e r o
TEST UNDER MASK z e r o
TRANSLATE AND T E S T z e r o

n

a 2

1 z e r o
1 z e r o

L z e r o
1 z e r o
L z e r o

1 z e r o
1 z e r o

Low

"

n o t z e r o

1 z e r o

n o t z e r o
1 z e r o

n o t z e r o

i n c o m p l e t e

L O W

m i x e d

g z e r o
g z e r o

g z e r o
h i g h

g z e r o

g z e r o
g z e r o
g z e r o

"

"

h i g h
g z e r o
g z e r o
"

"

"

c o m p l e t e

o v e r f l o w
o v e r f l o w
"

"

"

"

o v e r f l o w
o v e r f l o w

"

"

"

"

"

"

o n e
"

"

Ineut=ol?teut-Qet~atinllE
HALT 1/0 n o t w o r k i n g h a l t e d
START 1/0

s t o p p e d n o t o p e r
a v a i l a b l e CSW s t o r e d b u s y

TEST CHANNEL n o t w o r k i n g CSW r e a d y w o r k i n g n o t o p e r
n o t o p e r

TEST 1 / 0 a v a i l a b l e CSW s t o r e d w o r k i n g n o t o p e r

-
k
v)

Appendix 5 continued
S e l e c t o r c h a n n e l 3 0 0 0 0 0 0 1 1 a a a a a a a a 3 x
S e l e c t o r c h a n n e l 4 0 0 0 0 0 1 0 0 a a g a a a a a 4 x

c o m p l e t e

S e l e c t o r c h a n n e l 5 0 0 0 0 0 1 0 1 a a a a a a a a 5 x
c o m p l e t e
c o m p l e t e

S e l e c t o r c h a n n e l 6 0 0 0 0 0 1 1 0 a a a a a a a a 6 x c o m p l e t e

e~sgrsm (o l d PSW 40. new PSW 1 0 4 . p r i o r i t y 2)

O p e r a t i o n
P r i v i l e g e d o p e r a t i o n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

00000000 0 0 0 0 0 0 0 1 1.2.3 s u p p r e s s

E x e c u t e 00000000 0 0 0 0 0 0 1 1
1 . 2 s u p p r e s s

P r o t e c t i o n
s u p p r e s s

00000000 0 0 0 0 0 1 0 0 0 . 2 . 3 s u p p r e s s / t e r m i n a t e
A d d r e s s i n g
S p e c i f i c a t i o n

00000000 0 0 0 0 0 1 0 1 0 1 1 . 2 . 3 s u p p r e 4 s / t e r m i n a t e
00000000 00000110 1.2.3 s u p p r e s s

D a t a 00000000 0 0 0 0 0 1 1 1 2 . 3 t e r m i n a t e
F i x e d - p o i n t o v e r f l o w 00000000 0 0 0 0 1 0 0 0 3 6 1.2
F i x e d - p o i n t d i v i d e 00000000 0 0 0 0 1 0 0 1

c o m p l e t e

D e c i m a l o v e r f l o w 00000000 0 0 0 0 1 0 1 0 37 3
1.2 s u p p r e s s / c o m p l e t e

D e c i m a l d i v i d e 00000000 0 0 0 0 1 0 1 1
c o m p l e t e

3
E x p o n e n t o v e r f l o w 00000000 0 0 0 0 1 1 0 0

s u p p r e s s
1 .2

E x p o n e n t u n d e r f l o w 00000000 0 0 0 0 1 1 0 1 3 8 1.2
t e r m i n a t e
c o m p l e t e

S i g n i f i c a n c e 00000000 0 0 0 0 1 1 1 0 3 9 1.2 c o m p l e t e
F l o a t i n g - p o i n t d i v i d e 00000000 0 0 0 0 1 1 1 1 1 . 2 s u p p r e s s

Bgeqrvlgnr C a l l (o l d PSW 32. new PSW 96. p r i o r i t y 2)

I n s t r u c t i o n b i t s 00000000 r r r r r r r r 1 c o m p l e t e

2

- E x t e r n a l """_ (o l d PSW 24. new PSW 88 . p r i o r i t y 3)

E x t e r n a l s i g n a l 1 00000000 x x x x x x x l 7 x c o m p l e t e
E x t e r n a l s i g n a l 2 00000000 x x x x x x l x 7 x c o m p l e t e

E x t e r n a l s i g n a l 4 00000000 x x x x l x x x 7 x
E x t e r n a l s i g n a l 3 0 0 0 0 0 0 0 0 x x x x x l x x 7 x c o m p l e t e

c o m p l e t e
E x t e r n a l s i g n a l 5 00000000 x x x l x x x x 7 x c o m p l e t e
E x t e r n a l s i g n a l 6 00000000 x x l x x x x x 7 x c o m p l e t e
I n t e r r u p t k e y oooooooo X l x x x x x X 7 X

T i m e r
c o m p l e t e

00000000 1 x x x x x x x 7 x c o m p l e t e

M a c h i n e C h e c k (o l d PSW 48. new PSW 1 1 2 , p r i o r i t y 1)

M a c h i n e m a l f u n c t i o n 00000000 00000000 1 3 x t e r m i n a t e

Lrams!

a D e v i c e a d d r e s s b i t s
r B i t s o f R 1 a n d R 2 f i e l d o f SUPERVISOR CALL
x U n p r e d i c t a b l e

INSTRUCTION LENGTH RECORDING

INSTRUCTION PSW BITS INSTRUCTION INSTRUCTION INSTRUCTION
L%t?4ln_cQo€""a~~""" -~~~~-Q=~""" -L~t?4l~""" " -FQ~~~~

0 00
1 0 1 00 O n e h a l f w o r d
2 1 0 0 1 Two h a l f w o r d s RX
2 10 1 0
3 11 11

N o t a v a i l a b l e
RR

Two h a l f w o r d s R S or SI
T h r e e h a l f w o r d s S S

